Namespaces
Variants
Actions

Difference between revisions of "Non-linear functional"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
A special case of a [[Non-linear operator|non-linear operator]] defined on a real (or complex) vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067120/n0671201.png" /> and whose values are real (or complex) numbers. Examples of non-linear functionals are the functionals of the calculus of variations,
+
{{TEX|done}}
 +
A special case of a [[Non-linear operator|non-linear operator]] defined on a real (or complex) vector space $X$ and whose values are real (or complex) numbers. Examples of non-linear functionals are the functionals of the calculus of variations,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067120/n0671202.png" /></td> </tr></table>
+
$$f(x)=\int\limits_a^bF(t,x(t),x'(t))dt,$$
  
 
or convex functionals, defined by the condition
 
or convex functionals, defined by the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067120/n0671203.png" /></td> </tr></table>
+
$$f(\lambda y+(1-\lambda)x)\leq\lambda f(y)+(1-\lambda)f(x),$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067120/n0671204.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067120/n0671205.png" />, and, say, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067120/n0671206.png" /> — the norm of an element in a normed space.
+
where $x,y\in X$, $0\leq\lambda\leq1$, and, say, $f(x)=\|x\|$ — the norm of an element in a normed space.
  
  

Latest revision as of 14:55, 14 September 2014

A special case of a non-linear operator defined on a real (or complex) vector space $X$ and whose values are real (or complex) numbers. Examples of non-linear functionals are the functionals of the calculus of variations,

$$f(x)=\int\limits_a^bF(t,x(t),x'(t))dt,$$

or convex functionals, defined by the condition

$$f(\lambda y+(1-\lambda)x)\leq\lambda f(y)+(1-\lambda)f(x),$$

where $x,y\in X$, $0\leq\lambda\leq1$, and, say, $f(x)=\|x\|$ — the norm of an element in a normed space.


Comments

See also Non-linear functional analysis.

How to Cite This Entry:
Non-linear functional. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Non-linear_functional&oldid=33290
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article