Difference between revisions of "Briot-Bouquet equation"
Ulf Rehmann (talk | contribs) m (moved Briot–Bouquet equation to Briot-Bouquet equation: ascii title) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
An ordinary differential equation | An ordinary differential equation | ||
− | + | $$x^my'=f(x,y),\tag{1}$$ | |
− | where | + | where $m$ is a positive integer and the function $f$ is analytic at $x=y=0$, $f_y'(0,0)\neq0$, $f(0,0)=0$. It was shown by C. Briot and T. Bouquet [[#References|[1]]] that any equation of the type |
− | + | $$\alpha(z,w)w'=\beta(z,w),$$ | |
− | where | + | where $\alpha(0,0)=\beta(0,0)=0$ and $\alpha$ and $\beta$ are analytic at the origin, can be reduced, by means of a special local changes of the variables, to a finite number of equations of type \ref{1}. Equation \ref{1} always (except for the case where $m=1$ and $f_y'(0,0)$ is a natural number) has a unique solution in the form of a formal power series: |
− | + | $$y=\xi(x)\equiv\xi_1 x+\xi_2x^2+\dots,\tag{2}$$ | |
− | which converges for sufficiently small | + | which converges for sufficiently small $x$ if $m=1$, and can diverge for all $x\neq0$ if $m>1$. In \ref{1}, let |
− | + | $$f\equiv f_0(x)+f_1(x)y,$$ | |
− | then, for the series | + | then, for the series \ref{2} to converge, it is necessary and sufficient to meet $m-1$ conditions concerning the coefficients of the Taylor series of $f_0$ and $f_1$; all the coefficients are included in these conditions, so that the existence or non-existence of an analytic solution $y=\xi(x)$ of equation \ref{1} cannot be proved by any partial sum of the Taylor series of $f$ (cf. [[#References|[2]]], [[#References|[3]]]). For the case of a general function $f$ there are $(m-1)+(m-1)\times\infty$ such conditions, [[#References|[4]]]. Accordingly, the Briot–Bouquet equation is sometimes referred to as equation \ref{1} with $m>1$. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Briot, T. Bouquet, "Récherches sur les proprietés des équations différentielles" ''J. École Polytechnique'' , '''21''' : 36 (1856) pp. 133–198</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bieberbach, "Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt" , Springer (1965)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.D. Bryuno, "Analytical form of differential equations. Introduction" ''Trans. Moscow Math. Soc.'' , '''25''' (1971) pp. 134–151 ''Trudy Moskov. Mat. Obshch.'' , '''25''' (1971) pp. 120–138</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Martinet, J.P. Ramis, "Problèmes de modules pour des équations différentielles du premier ordre" ''Publ. Math. IHES'' , '''55''' (1982) pp. 63–164</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Briot, T. Bouquet, "Récherches sur les proprietés des équations différentielles" ''J. École Polytechnique'' , '''21''' : 36 (1856) pp. 133–198</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bieberbach, "Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt" , Springer (1965)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.D. Bryuno, "Analytical form of differential equations. Introduction" ''Trans. Moscow Math. Soc.'' , '''25''' (1971) pp. 134–151 ''Trudy Moskov. Mat. Obshch.'' , '''25''' (1971) pp. 120–138</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J. Martinet, J.P. Ramis, "Problèmes de modules pour des équations différentielles du premier ordre" ''Publ. Math. IHES'' , '''55''' (1982) pp. 63–164</TD></TR></table> |
Revision as of 15:23, 30 August 2014
An ordinary differential equation
$$x^my'=f(x,y),\tag{1}$$
where $m$ is a positive integer and the function $f$ is analytic at $x=y=0$, $f_y'(0,0)\neq0$, $f(0,0)=0$. It was shown by C. Briot and T. Bouquet [1] that any equation of the type
$$\alpha(z,w)w'=\beta(z,w),$$
where $\alpha(0,0)=\beta(0,0)=0$ and $\alpha$ and $\beta$ are analytic at the origin, can be reduced, by means of a special local changes of the variables, to a finite number of equations of type \ref{1}. Equation \ref{1} always (except for the case where $m=1$ and $f_y'(0,0)$ is a natural number) has a unique solution in the form of a formal power series:
$$y=\xi(x)\equiv\xi_1 x+\xi_2x^2+\dots,\tag{2}$$
which converges for sufficiently small $x$ if $m=1$, and can diverge for all $x\neq0$ if $m>1$. In \ref{1}, let
$$f\equiv f_0(x)+f_1(x)y,$$
then, for the series \ref{2} to converge, it is necessary and sufficient to meet $m-1$ conditions concerning the coefficients of the Taylor series of $f_0$ and $f_1$; all the coefficients are included in these conditions, so that the existence or non-existence of an analytic solution $y=\xi(x)$ of equation \ref{1} cannot be proved by any partial sum of the Taylor series of $f$ (cf. [2], [3]). For the case of a general function $f$ there are $(m-1)+(m-1)\times\infty$ such conditions, [4]. Accordingly, the Briot–Bouquet equation is sometimes referred to as equation \ref{1} with $m>1$.
References
[1] | C. Briot, T. Bouquet, "Récherches sur les proprietés des équations différentielles" J. École Polytechnique , 21 : 36 (1856) pp. 133–198 |
[2] | L. Bieberbach, "Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt" , Springer (1965) |
[3] | A.D. Bryuno, "Analytical form of differential equations. Introduction" Trans. Moscow Math. Soc. , 25 (1971) pp. 134–151 Trudy Moskov. Mat. Obshch. , 25 (1971) pp. 120–138 |
[4] | J. Martinet, J.P. Ramis, "Problèmes de modules pour des équations différentielles du premier ordre" Publ. Math. IHES , 55 (1982) pp. 63–164 |
Briot-Bouquet equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Briot-Bouquet_equation&oldid=33218