Difference between revisions of "Stepanov almost-periodic functions"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | A class | + | {{TEX|done}} |
+ | A class $S_l^p$ of functions that are measurable and summable together with their $p$-th power $(p\geq1)$ on every finite interval $[x,x+l]$ and that can be approximated in the metric of the Stepanov space (see below) by finite sums | ||
− | + | $$\sum_{n=1}^Na_ne^{i\lambda_nx},$$ | |
− | where | + | where $a_n$ are complex coefficients and $\lambda_n$ are real numbers. The distance in the Stepanov space is defined by the formula |
− | + | $$D_{S_l^p}[f(x),g(x)]=\sup_{-\infty<x<\infty}\left[\frac1l\int\limits_x^{x+l}|f(x)-g(x)|^pdx\right]^{1/p}.$$ | |
− | Functions of the class | + | Functions of the class $S_l^p$ can also be defined using the concept of an [[Almost-period|almost-period]]. |
− | Functions of the class | + | Functions of the class $S^p=S_1^p$ possess a number of properties also possessed by [[Bohr almost-periodic functions|Bohr almost-periodic functions]]. For example, functions of the class $S^p$ are bounded and uniformly continuous (in the metric $D_{S_l^p}$), the limit $f$ of a convergent sequence of Stepanov almost-periodic functions $\{f_n\}$ (in the metric of $S^p$) belongs to $S^p$. If a function in $S^p$ is uniformly continuous (in the ordinary sense) on the whole real axis, then it is a Bohr almost-periodic function. Introduced by V.V. Stepanov [[#References|[1]]]. |
====References==== | ====References==== | ||
Line 19: | Line 20: | ||
See also [[Almost-periodic function|Almost-periodic function]]. | See also [[Almost-periodic function|Almost-periodic function]]. | ||
− | The different spaces | + | The different spaces $S_l^p$, each with its metric $D_{S_l^p}$, are topologically equivalent. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. [V.V. Stepanov] Stepanoff, "Ueber einige Verallgemeinerungen der fastperiodischen Funktionen" ''Math. Ann.'' , '''45''' (1925) pp. 473–498</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. [V.V. Stepanov] Stepanoff, "Ueber einige Verallgemeinerungen der fastperiodischen Funktionen" ''Math. Ann.'' , '''45''' (1925) pp. 473–498</TD></TR></table> |
Latest revision as of 08:36, 25 August 2014
A class $S_l^p$ of functions that are measurable and summable together with their $p$-th power $(p\geq1)$ on every finite interval $[x,x+l]$ and that can be approximated in the metric of the Stepanov space (see below) by finite sums
$$\sum_{n=1}^Na_ne^{i\lambda_nx},$$
where $a_n$ are complex coefficients and $\lambda_n$ are real numbers. The distance in the Stepanov space is defined by the formula
$$D_{S_l^p}[f(x),g(x)]=\sup_{-\infty<x<\infty}\left[\frac1l\int\limits_x^{x+l}|f(x)-g(x)|^pdx\right]^{1/p}.$$
Functions of the class $S_l^p$ can also be defined using the concept of an almost-period.
Functions of the class $S^p=S_1^p$ possess a number of properties also possessed by Bohr almost-periodic functions. For example, functions of the class $S^p$ are bounded and uniformly continuous (in the metric $D_{S_l^p}$), the limit $f$ of a convergent sequence of Stepanov almost-periodic functions $\{f_n\}$ (in the metric of $S^p$) belongs to $S^p$. If a function in $S^p$ is uniformly continuous (in the ordinary sense) on the whole real axis, then it is a Bohr almost-periodic function. Introduced by V.V. Stepanov [1].
References
[1] | W. [V.V. Stepanov] Stepanoff, "Sur quelques généralisations des fonctions presque périodiques" C.R. Acad. Sci. Paris , 181 (1925) pp. 90–92 |
Comments
See also Almost-periodic function.
The different spaces $S_l^p$, each with its metric $D_{S_l^p}$, are topologically equivalent.
References
[a1] | W. [V.V. Stepanov] Stepanoff, "Ueber einige Verallgemeinerungen der fastperiodischen Funktionen" Math. Ann. , 45 (1925) pp. 473–498 |
Stepanov almost-periodic functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stepanov_almost-periodic_functions&oldid=33130