|
|
Line 1: |
Line 1: |
− | Solutions of differential equations whose [[Jacobi brackets|Jacobi brackets]] vanish identically. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i0517001.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i0517002.png" /> variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i0517003.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i0517004.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i0517005.png" /> is a first integral of the first-order partial differential equation | + | {{TEX|done}} |
| + | Solutions of differential equations whose [[Jacobi brackets|Jacobi brackets]] vanish identically. A function $G(x,u,p)$ of $2n+1$ variables $x=(x_1,\dots,x_n)$, $u$, $p=(p_1,\dots,p_n)$ is a first integral of the first-order partial differential equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i0517006.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | $$F(x,u,p)=0,\tag{1}$$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i0517007.png" /></td> </tr></table>
| + | $$u=u(x_1,\dots,x_n),\quad p_i=\frac{\partial u}{\partial x_i},\quad1\leq i\leq n,$$ |
| | | |
− | if it is constant along each [[Characteristic|characteristic]] of this equation. Two first integrals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i0517008.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i0517009.png" />, are in involution if their Jacobi brackets vanish identically in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170010.png" />: | + | if it is constant along each [[Characteristic|characteristic]] of this equation. Two first integrals $G(x,u,p)$, $i=1,2$, are in involution if their Jacobi brackets vanish identically in $(x,u,p)$: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170011.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$[G_1,G_2]=0.\tag{2}$$ |
| | | |
− | More generally, two functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170012.png" /> are in involution if condition (2) holds. Any first integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170013.png" /> of equation (1) is in involution with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170014.png" />; the last function itself is a first integral. | + | More generally, two functions $G_1,G_2$ are in involution if condition \ref{2} holds. Any first integral $G$ of equation \ref{1} is in involution with $F$; the last function itself is a first integral. |
| | | |
| These definitions can be extended to a system of equations | | These definitions can be extended to a system of equations |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| + | $$F_i(x,u,p)=0,\quad1\leq i\leq m.$$ |
| | | |
− | Here the first integral of this system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170016.png" /> can be regarded as a solution of the system of linear equations | + | Here the first integral of this system $G(x,u,p)$ can be regarded as a solution of the system of linear equations |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
| + | $$[F_i,G]=0,\quad1\leq i\leq m,\tag{4}$$ |
| | | |
− | with unknown function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170018.png" />. | + | with unknown function $G$. |
| | | |
− | If (3) is an [[Involutional system|involutional system]], then (4) is a [[Complete system|complete system]]. It is in involution if the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170019.png" /> in (3) do not depend on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051700/i05170020.png" />. | + | If \ref{3} is an [[Involutional system|involutional system]], then \ref{4} is a [[Complete system|complete system]]. It is in involution if the functions $F_i$ in \ref{3} do not depend on $u$. |
| | | |
| ====References==== | | ====References==== |
Revision as of 06:41, 22 August 2014
Solutions of differential equations whose Jacobi brackets vanish identically. A function $G(x,u,p)$ of $2n+1$ variables $x=(x_1,\dots,x_n)$, $u$, $p=(p_1,\dots,p_n)$ is a first integral of the first-order partial differential equation
$$F(x,u,p)=0,\tag{1}$$
$$u=u(x_1,\dots,x_n),\quad p_i=\frac{\partial u}{\partial x_i},\quad1\leq i\leq n,$$
if it is constant along each characteristic of this equation. Two first integrals $G(x,u,p)$, $i=1,2$, are in involution if their Jacobi brackets vanish identically in $(x,u,p)$:
$$[G_1,G_2]=0.\tag{2}$$
More generally, two functions $G_1,G_2$ are in involution if condition \ref{2} holds. Any first integral $G$ of equation \ref{1} is in involution with $F$; the last function itself is a first integral.
These definitions can be extended to a system of equations
$$F_i(x,u,p)=0,\quad1\leq i\leq m.$$
Here the first integral of this system $G(x,u,p)$ can be regarded as a solution of the system of linear equations
$$[F_i,G]=0,\quad1\leq i\leq m,\tag{4}$$
with unknown function $G$.
If \ref{3} is an involutional system, then \ref{4} is a complete system. It is in involution if the functions $F_i$ in \ref{3} do not depend on $u$.
References
[1] | N.M. Gyunter, "Integrating first-order partial differential equations" , Leningrad-Moscow (1934) (In Russian) |
[2] | E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 2. Partielle Differentialgleichungen erster Ordnung für die gesuchte Funktion , Akad. Verlagsgesell. (1944) |
For additional references see Complete system. An involutional system is usually called a system in involution.
How to Cite This Entry:
Integrals in involution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integrals_in_involution&oldid=33069
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article