|
|
Line 1: |
Line 1: |
− | A two-place [[Predicate|predicate]] on a given set. The term is sometimes used to denote a subset of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b0163801.png" /> of ordered pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b0163802.png" /> of elements of a given set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b0163803.png" />. A binary relation is a special case of a [[Relation|relation]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b0163804.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b0163805.png" />, then one says that the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b0163806.png" /> is in binary relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b0163807.png" /> to the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b0163808.png" />. An alternative notation for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b0163809.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638010.png" />. | + | {{TEX|done}} |
| + | A two-place [[Predicate|predicate]] on a given set. The term is sometimes used to denote a subset of the set $A\times A$ of ordered pairs $(a,b)$ of elements of a given set $A$. A binary relation is a special case of a [[Relation|relation]]. Let $R\subseteq A\times A$. If $(a,b)\in R$, then one says that the element $a$ is in binary relation $R$ to the element $b$. An alternative notation for $(a,b)\in R$ is $aRb$. |
| | | |
− | The empty subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638011.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638012.png" /> and the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638013.png" /> itself are called, respectively, the nil relation and the universal relation in the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638014.png" />. The diagonal of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638015.png" />, i.e. the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638016.png" />, is the equality relation or the identity binary relation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638017.png" />. | + | The empty subset $\emptyset$ in $A\times A$ and the set $A\times A$ itself are called, respectively, the nil relation and the universal relation in the set $A$. The diagonal of the set $A\times A$, i.e. the set $\Delta=\{(a,a)\colon a\in A\}$, is the equality relation or the identity binary relation in $A$. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638018.png" /> be binary relations in a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638019.png" />. In addition to the set-theoretic operations of union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638020.png" />, intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638021.png" />, and complementation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638022.png" />, one has the inversion | + | Let $R,R_1,R_2$ be binary relations in a set $A$. In addition to the set-theoretic operations of union $R_1\cup R_2$, intersection $R_1\cap R_2$, and complementation $R'=(A\times A)\setminus R$, one has the inversion |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638023.png" /></td> </tr></table>
| + | $$R^{-1}=\{(a,b)\colon(b,a)\in R\},$$ |
| | | |
| as well as the operation of multiplication: | | as well as the operation of multiplication: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638024.png" /></td> </tr></table>
| + | $$R_1\circ R_2=\{(a,b)\colon(\exists c\in A)(aR_1c\text{ and }cR_2b)\}.$$ |
| | | |
− | The binary relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638025.png" /> is said to be the inverse of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638026.png" />. Multiplication of binary relations is associative, but as a rule not commutative. | + | The binary relation $R^{-1}$ is said to be the inverse of $R$. Multiplication of binary relations is associative, but as a rule not commutative. |
| | | |
− | A binary relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638027.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638028.png" /> is said to be 1) reflexive if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638029.png" />; 2) transitive if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638030.png" />; 3) symmetric if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638031.png" />; and 4) anti-symmetric if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638032.png" />. If a binary relation has some of the properties 1), 2), 3) or 4), the inverse relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638033.png" /> has these properties as well. The binary relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638034.png" /> is said to be functional if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016380/b01638035.png" />. | + | A binary relation $R$ in $A$ is said to be 1) reflexive if $\Delta\subseteq R$; 2) transitive if $R\circ R\subseteq R$; 3) symmetric if $R^{-1}\subseteq R$; and 4) anti-symmetric if $R\cap R^{-1}\subseteq\Delta$. If a binary relation has some of the properties 1), 2), 3) or 4), the inverse relation $R^{-1}$ has these properties as well. The binary relation $R\subseteq A\times A$ is said to be functional if $R^{-1}\circ R\subseteq\Delta$. |
| | | |
| The most important types of binary relations are equivalences, order relations (total and partial), and functional relations (cf. [[Equivalence|Equivalence]]; [[Order relation|Order relation]]; [[Functional relation|Functional relation]]). | | The most important types of binary relations are equivalences, order relations (total and partial), and functional relations (cf. [[Equivalence|Equivalence]]; [[Order relation|Order relation]]; [[Functional relation|Functional relation]]). |
Revision as of 18:21, 21 August 2014
A two-place predicate on a given set. The term is sometimes used to denote a subset of the set $A\times A$ of ordered pairs $(a,b)$ of elements of a given set $A$. A binary relation is a special case of a relation. Let $R\subseteq A\times A$. If $(a,b)\in R$, then one says that the element $a$ is in binary relation $R$ to the element $b$. An alternative notation for $(a,b)\in R$ is $aRb$.
The empty subset $\emptyset$ in $A\times A$ and the set $A\times A$ itself are called, respectively, the nil relation and the universal relation in the set $A$. The diagonal of the set $A\times A$, i.e. the set $\Delta=\{(a,a)\colon a\in A\}$, is the equality relation or the identity binary relation in $A$.
Let $R,R_1,R_2$ be binary relations in a set $A$. In addition to the set-theoretic operations of union $R_1\cup R_2$, intersection $R_1\cap R_2$, and complementation $R'=(A\times A)\setminus R$, one has the inversion
$$R^{-1}=\{(a,b)\colon(b,a)\in R\},$$
as well as the operation of multiplication:
$$R_1\circ R_2=\{(a,b)\colon(\exists c\in A)(aR_1c\text{ and }cR_2b)\}.$$
The binary relation $R^{-1}$ is said to be the inverse of $R$. Multiplication of binary relations is associative, but as a rule not commutative.
A binary relation $R$ in $A$ is said to be 1) reflexive if $\Delta\subseteq R$; 2) transitive if $R\circ R\subseteq R$; 3) symmetric if $R^{-1}\subseteq R$; and 4) anti-symmetric if $R\cap R^{-1}\subseteq\Delta$. If a binary relation has some of the properties 1), 2), 3) or 4), the inverse relation $R^{-1}$ has these properties as well. The binary relation $R\subseteq A\times A$ is said to be functional if $R^{-1}\circ R\subseteq\Delta$.
The most important types of binary relations are equivalences, order relations (total and partial), and functional relations (cf. Equivalence; Order relation; Functional relation).
How to Cite This Entry:
Binary relation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Binary_relation&oldid=33053
This article was adapted from an original article by D.M. Smirnov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article