|
|
Line 1: |
Line 1: |
− | A general appellation for several results concerning the linear-topological properties of the space of continuous linear mappings of one linear topological space into another. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b0152001.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b0152002.png" /> be locally convex linear topological spaces, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b0152003.png" /> is a [[Barrelled space|barrelled space]], or let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b0152004.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b0152005.png" /> be linear topological spaces, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b0152006.png" /> is a [[Baire space|Baire space]]. The following propositions are then valid. 1) Any subset of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b0152007.png" /> of continuous linear mappings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b0152008.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b0152009.png" /> which is bounded in the topology of simple convergence is equicontinuous (the uniform boundedness principle); 2) If a filter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520010.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520011.png" /> contains a set bounded in the topology of simple convergence, and converges in the topology of simple convergence to some mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520013.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520014.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520015.png" /> is a continuous linear mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520016.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520017.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520018.png" /> converges uniformly to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520019.png" /> on each compact subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520020.png" /> [[#References|[2]]], [[#References|[3]]]. | + | {{TEX|done}} |
| + | A general appellation for several results concerning the linear-topological properties of the space of continuous linear mappings of one linear topological space into another. Let $E$ and $F$ be locally convex linear topological spaces, where $E$ is a [[Barrelled space|barrelled space]], or let $E$ and $F$ be linear topological spaces, where $E$ is a [[Baire space|Baire space]]. The following propositions are then valid. 1) Any subset of the set $L(E,F)$ of continuous linear mappings of $E$ into $F$ which is bounded in the topology of simple convergence is equicontinuous (the uniform boundedness principle); 2) If a filter $P$ in $L(E,F)$ contains a set bounded in the topology of simple convergence, and converges in the topology of simple convergence to some mapping $v$ of $E$ into $F$, then $v$ is a continuous linear mapping of $E$ into $F$, and $P$ converges uniformly to $v$ on each compact subset of $E$ [[#References|[2]]], [[#References|[3]]]. |
| | | |
− | These general results make it possible to render the classical results of S. Banach and H. Steinhaus [[#References|[1]]] more precise: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520022.png" /> be Banach spaces and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520023.png" /> be a subset of the second category in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520024.png" />. Then, 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520026.png" /> is finite for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520027.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520028.png" />; 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520029.png" /> is a sequence of continuous linear mappings of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520030.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520031.png" />, and if the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520032.png" /> converges in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520033.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520034.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520035.png" /> converges uniformly on any compact subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520036.png" /> to a continuous linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520037.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520038.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b015/b015200/b01520039.png" />. | + | These general results make it possible to render the classical results of S. Banach and H. Steinhaus [[#References|[1]]] more precise: Let $E$ and $F$ be Banach spaces and let $M$ be a subset of the second category in $E$. Then, 1) if $H\subset L(E,F)$ and $\sup\{\|u(x)\|\colon u\in H\}$ is finite for all $x\in M$, then $\sup\{\|u\|\colon u\in H\}<\infty$; 2) if $u_n$ is a sequence of continuous linear mappings of $E$ into $F$, and if the sequence $u_n(x)$ converges in $F$ for all $x\in M$, then $u_n$ converges uniformly on any compact subset of $E$ to a continuous linear mapping $v$ of $E$ into $F$. |
| | | |
| ====References==== | | ====References==== |
Latest revision as of 11:05, 19 August 2014
A general appellation for several results concerning the linear-topological properties of the space of continuous linear mappings of one linear topological space into another. Let $E$ and $F$ be locally convex linear topological spaces, where $E$ is a barrelled space, or let $E$ and $F$ be linear topological spaces, where $E$ is a Baire space. The following propositions are then valid. 1) Any subset of the set $L(E,F)$ of continuous linear mappings of $E$ into $F$ which is bounded in the topology of simple convergence is equicontinuous (the uniform boundedness principle); 2) If a filter $P$ in $L(E,F)$ contains a set bounded in the topology of simple convergence, and converges in the topology of simple convergence to some mapping $v$ of $E$ into $F$, then $v$ is a continuous linear mapping of $E$ into $F$, and $P$ converges uniformly to $v$ on each compact subset of $E$ [2], [3].
These general results make it possible to render the classical results of S. Banach and H. Steinhaus [1] more precise: Let $E$ and $F$ be Banach spaces and let $M$ be a subset of the second category in $E$. Then, 1) if $H\subset L(E,F)$ and $\sup\{\|u(x)\|\colon u\in H\}$ is finite for all $x\in M$, then $\sup\{\|u\|\colon u\in H\}<\infty$; 2) if $u_n$ is a sequence of continuous linear mappings of $E$ into $F$, and if the sequence $u_n(x)$ converges in $F$ for all $x\in M$, then $u_n$ converges uniformly on any compact subset of $E$ to a continuous linear mapping $v$ of $E$ into $F$.
References
References
How to Cite This Entry:
Banach-Steinhaus theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Banach-Steinhaus_theorem&oldid=32996
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article