Namespaces
Variants
Actions

Difference between revisions of "Laplace integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
An integral of the form
 
An integral of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057490/l0574901.png" /></td> </tr></table>
+
$$\int\limits_0^\infty f(t)e^{-pt}dt\equiv F(p),$$
  
that defines the integral [[Laplace transform|Laplace transform]] of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057490/l0574902.png" /> of a real variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057490/l0574903.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057490/l0574904.png" />, giving a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057490/l0574905.png" /> of a complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057490/l0574906.png" />. It was considered by P. Laplace at the end of the eighteenth and beginning of the 19th century; it was used by L. Euler in 1737.
+
that defines the integral [[Laplace transform|Laplace transform]] of a function $f(t)$ of a real variable $t$, $0<t<\infty$, giving a function $F(p)$ of a complex variable $p$. It was considered by P. Laplace at the end of the eighteenth and beginning of the 19th century; it was used by L. Euler in 1737.
  
Two specific definite integrals depending on the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057490/l0574907.png" />:
+
Two specific definite integrals depending on the parameters $\alpha,\beta>0$:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057490/l0574908.png" /></td> </tr></table>
+
$$\int\limits_0^\infty\frac{\cos\beta x}{\alpha^2+x^2}dx=\frac{\pi}{2\alpha}e^{-\alpha\beta},$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l057/l057490/l0574909.png" /></td> </tr></table>
+
$$\int\limits_0^\infty\frac{x\sin\beta x}{\alpha^2+x^2}dx=\frac\pi2e^{-\alpha\beta}.$$
  
  

Latest revision as of 12:31, 18 August 2014

An integral of the form

$$\int\limits_0^\infty f(t)e^{-pt}dt\equiv F(p),$$

that defines the integral Laplace transform of a function $f(t)$ of a real variable $t$, $0<t<\infty$, giving a function $F(p)$ of a complex variable $p$. It was considered by P. Laplace at the end of the eighteenth and beginning of the 19th century; it was used by L. Euler in 1737.

Two specific definite integrals depending on the parameters $\alpha,\beta>0$:

$$\int\limits_0^\infty\frac{\cos\beta x}{\alpha^2+x^2}dx=\frac{\pi}{2\alpha}e^{-\alpha\beta},$$

$$\int\limits_0^\infty\frac{x\sin\beta x}{\alpha^2+x^2}dx=\frac\pi2e^{-\alpha\beta}.$$


Comments

References

[a1] F. Oberhettinger, L. Badii, "Tables of Laplace transforms" , Springer (1973)
[a2] I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972) pp. Chapt. 6
[a3] V.A. Ditkin, A.P. Prudnikov, "Integral transforms" , Plenum (1969) (Translated from Russian)
[a4] G. Doetsch, "Handbuch der Laplace-Transformation" , 1–3 , Birkhäuser (1950–1956)
How to Cite This Entry:
Laplace integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laplace_integral&oldid=32990
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article