Difference between revisions of "Bourget function"
From Encyclopedia of Mathematics
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | The function | + | {{TEX|done}} |
+ | The function $J_{n,k}(z)$ which may be defined as a generalization of the integral representation of the [[Bessel functions|Bessel functions]] | ||
− | + | $$J_{n,k}(z)=\frac{1}{2\pi i}\int t^{-n-1}\left(t+\frac1t\right)^k\exp\left\lbrace\frac12z\left(t-\frac1t\right)\right\rbrace dt,$$ | |
− | where | + | where $n$ is an integer and $k$ is a positive integer. The integration contour makes one counter-clockwise turn around the coordinate origin. In other words, |
− | + | $$J_{n,k}(z)=\frac1\pi\int\limits_0^\pi(2\cos\theta)^k\cos(n\theta-z\sin\theta)d\theta,$$ | |
− | + | $J_{n,0}(z)\equiv J_n(z)$ is a cylinder function of the first kind. So named after J. Bourget [[#References|[1]]], who studied the function with a view to various applications in astronomy. | |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Bourget, "Mémoire sur les nombres de Cauchy et leur application à divers problèmes de mécanique céleste" ''J. Math. Pures Appl. (2)'' , '''6''' (1861) pp. 32–54</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.N. Watson, "A treatise on the theory of Bessel functions" , '''1''' , Cambridge Univ. Press (1952) pp. Chapt. 10</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Bourget, "Mémoire sur les nombres de Cauchy et leur application à divers problèmes de mécanique céleste" ''J. Math. Pures Appl. (2)'' , '''6''' (1861) pp. 32–54</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.N. Watson, "A treatise on the theory of Bessel functions" , '''1''' , Cambridge Univ. Press (1952) pp. Chapt. 10</TD></TR></table> |
Latest revision as of 12:15, 13 August 2014
The function $J_{n,k}(z)$ which may be defined as a generalization of the integral representation of the Bessel functions
$$J_{n,k}(z)=\frac{1}{2\pi i}\int t^{-n-1}\left(t+\frac1t\right)^k\exp\left\lbrace\frac12z\left(t-\frac1t\right)\right\rbrace dt,$$
where $n$ is an integer and $k$ is a positive integer. The integration contour makes one counter-clockwise turn around the coordinate origin. In other words,
$$J_{n,k}(z)=\frac1\pi\int\limits_0^\pi(2\cos\theta)^k\cos(n\theta-z\sin\theta)d\theta,$$
$J_{n,0}(z)\equiv J_n(z)$ is a cylinder function of the first kind. So named after J. Bourget [1], who studied the function with a view to various applications in astronomy.
References
[1] | J. Bourget, "Mémoire sur les nombres de Cauchy et leur application à divers problèmes de mécanique céleste" J. Math. Pures Appl. (2) , 6 (1861) pp. 32–54 |
[2] | G.N. Watson, "A treatise on the theory of Bessel functions" , 1 , Cambridge Univ. Press (1952) pp. Chapt. 10 |
How to Cite This Entry:
Bourget function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bourget_function&oldid=32896
Bourget function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bourget_function&oldid=32896
This article was adapted from an original article by V.I. Pagurova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article