Namespaces
Variants
Actions

Difference between revisions of "Disjunction"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX, table)
 
Line 1: Line 1:
The logical operation of formation of the statement  "A or B"  from two statements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d0332601.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d0332602.png" />. In formalized languages the disjunction of two statements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d0332603.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d0332604.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d0332605.png" />. The statements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d0332606.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d0332607.png" /> are called the disjunctive terms of the statement <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d0332608.png" />. The meaning of the disjunction can be expressed by the following [[Truth table|truth table]]:''''''<table border="0" cellpadding="0" cellspacing="0" style="background-color:black;"> <tr><td> <table border="0" cellspacing="1" cellpadding="4" style="background-color:black;"> <tbody> <tr> <td colname="1" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d0332609.png" /></td> <td colname="2" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d03326010.png" /></td> <td colname="3" style="background-color:white;" colspan="1"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033260/d03326011.png" /></td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">T</td> <td colname="2" style="background-color:white;" colspan="1">T</td> <td colname="3" style="background-color:white;" colspan="1">T</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">T</td> <td colname="2" style="background-color:white;" colspan="1">F</td> <td colname="3" style="background-color:white;" colspan="1">T</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">F</td> <td colname="2" style="background-color:white;" colspan="1">T</td> <td colname="3" style="background-color:white;" colspan="1">T</td> </tr> <tr> <td colname="1" style="background-color:white;" colspan="1">F</td> <td colname="2" style="background-color:white;" colspan="1">F</td> <td colname="3" style="background-color:white;" colspan="1">F</td> </tr> </tbody> </table>
+
{{TEX|done}}
 +
The logical operation of formation of the statement  "A or B"  from two statements $A$ and $B$. In formalized languages the disjunction of two statements $A$ and $B$ is denoted by $A\lor B$. The statements $A$ and $B$ are called the disjunctive terms of the statement $A\lor B$. The meaning of the disjunction can be expressed by the following [[Truth table|truth table]]:
  
</td></tr> </table>
+
<center>
 +
{| border="1" class="wikitable" style="text-align:center; width:300px;"
 +
|$A$||$B$||$A\lor B$
 +
|-
 +
|$T$||$T$||$T$
 +
|-
 +
|$T$||$F$||$T$
 +
|-
 +
|$F$||$T$||$T$
 +
|-
 +
|$F$||$F$||$F$
 +
|}
 +
</center>

Latest revision as of 07:30, 12 August 2014

The logical operation of formation of the statement "A or B" from two statements $A$ and $B$. In formalized languages the disjunction of two statements $A$ and $B$ is denoted by $A\lor B$. The statements $A$ and $B$ are called the disjunctive terms of the statement $A\lor B$. The meaning of the disjunction can be expressed by the following truth table:

$A$ $B$ $A\lor B$
$T$ $T$ $T$
$T$ $F$ $T$
$F$ $T$ $T$
$F$ $F$ $F$
How to Cite This Entry:
Disjunction. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Disjunction&oldid=32851
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article