Namespaces
Variants
Actions

Difference between revisions of "Quaternion group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
A metabelian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q0767801.png" />-group (cf. [[Meta-Abelian group|Meta-Abelian group]]) of order 8, defined by generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q0767802.png" /> and relations
+
{{TEX|done}}
 +
A metabelian $2$-group (cf. [[Meta-Abelian group|Meta-Abelian group]]) of order 8, defined by generators $x,y$ and relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q0767803.png" /></td> </tr></table>
+
$$x^4=x^2y^2=xyxy^{-1}=1.$$
  
The quaternion group can be isomorphically imbedded in the multiplicative group of the algebra of quaternions (cf. [[Quaternion|Quaternion]]; the imbedding is defined by the relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q0767804.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q0767805.png" />). The assignment
+
The quaternion group can be isomorphically imbedded in the multiplicative group of the algebra of quaternions (cf. [[Quaternion|Quaternion]]; the imbedding is defined by the relation $x\mapsto i$, $y\mapsto j$). The assignment
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q0767806.png" /></td> </tr></table>
+
$$x\mapsto\begin{pmatrix}0&1\\-1&0\end{pmatrix},y\mapsto\begin{pmatrix}0&i\\i&0\end{pmatrix}$$
  
defines a [[Faithful representation|faithful representation]] of the quaternion group by complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q0767807.png" />-matrices.
+
defines a [[Faithful representation|faithful representation]] of the quaternion group by complex $(2\times 2)$-matrices.
  
A generalized quaternion group (a special case of which is the quaternion group for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q0767808.png" />) is a group defined on generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q0767809.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678010.png" /> and relations
+
A generalized quaternion group (a special case of which is the quaternion group for $n=2$) is a group defined on generators $x$ and $y$ and relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678011.png" /></td> </tr></table>
+
$$x^{2^n}=x^{2^{n-1}}y^2=xyxy^{-1}=1$$
  
(where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678012.png" /> is a fixed number). The group is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678013.png" />-group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678014.png" /> and nilpotency class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678015.png" />.
+
(where $n$ is a fixed number). The group is a $2$-group of order $2^{n+1}$ and nilpotency class $n$.
  
The quaternion group is a [[Hamilton group|Hamilton group]], and the minimal Hamilton group in the sense that any non-Abelian Hamilton group contains a subgroup isomorphic to the quaternion group. The intersection of all non-trivial subgroups of the quaternion group (and also of any generalized quaternion group) is a non-trivial subgroup. Every non-Abelian finite group with this property is a generalized quaternion group. Among the finite Abelian groups, only the cyclic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678016.png" />-groups (cf. [[P-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678017.png" />-group]]; [[Cyclic group|Cyclic group]]) have this property. The generalized quaternion groups and the cyclic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678018.png" />-groups are the only <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678019.png" />-groups admitting a proper <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678021.png" />-homomorphism, that is, a homomorphism of the lattice of subgroups onto some lattice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678022.png" /> that is not an isomorphism.
+
The quaternion group is a [[Hamilton group|Hamilton group]], and the minimal Hamilton group in the sense that any non-Abelian Hamilton group contains a subgroup isomorphic to the quaternion group. The intersection of all non-trivial subgroups of the quaternion group (and also of any generalized quaternion group) is a non-trivial subgroup. Every non-Abelian finite group with this property is a generalized quaternion group. Among the finite Abelian groups, only the cyclic $p$-groups (cf. [[P-group|$p$-group]]; [[Cyclic group|Cyclic group]]) have this property. The generalized quaternion groups and the cyclic $p$-groups are the only $p$-groups admitting a proper $L$-homomorphism, that is, a homomorphism of the lattice of subgroups onto some lattice $L$ that is not an isomorphism.
  
 
Sometimes the term  "quaternion group"  is used to denote various subgroups of the multiplicative group of the algebra of quaternions and related topological groups.
 
Sometimes the term  "quaternion group"  is used to denote various subgroups of the multiplicative group of the algebra of quaternions and related topological groups.
Line 25: Line 26:
  
 
====Comments====
 
====Comments====
The imbedding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678024.png" /> of the quaternion group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678025.png" /> into the quaternion algebra gives a surjective algebra homomorphism of the group algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678026.png" /> to the quaternion algebra, exhibiting the latter as the quotient of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678027.png" /> by the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076780/q07678028.png" />.
+
The imbedding $x\mapsto i$, $y\mapsto j$ of the quaternion group $H$ into the quaternion algebra gives a surjective algebra homomorphism of the group algebra $\mathbf R[H]$ to the quaternion algebra, exhibiting the latter as the quotient of $\mathbf R[H]$ by the ideal $(x^2+1)$.

Latest revision as of 14:38, 2 August 2014

A metabelian $2$-group (cf. Meta-Abelian group) of order 8, defined by generators $x,y$ and relations

$$x^4=x^2y^2=xyxy^{-1}=1.$$

The quaternion group can be isomorphically imbedded in the multiplicative group of the algebra of quaternions (cf. Quaternion; the imbedding is defined by the relation $x\mapsto i$, $y\mapsto j$). The assignment

$$x\mapsto\begin{pmatrix}0&1\\-1&0\end{pmatrix},y\mapsto\begin{pmatrix}0&i\\i&0\end{pmatrix}$$

defines a faithful representation of the quaternion group by complex $(2\times 2)$-matrices.

A generalized quaternion group (a special case of which is the quaternion group for $n=2$) is a group defined on generators $x$ and $y$ and relations

$$x^{2^n}=x^{2^{n-1}}y^2=xyxy^{-1}=1$$

(where $n$ is a fixed number). The group is a $2$-group of order $2^{n+1}$ and nilpotency class $n$.

The quaternion group is a Hamilton group, and the minimal Hamilton group in the sense that any non-Abelian Hamilton group contains a subgroup isomorphic to the quaternion group. The intersection of all non-trivial subgroups of the quaternion group (and also of any generalized quaternion group) is a non-trivial subgroup. Every non-Abelian finite group with this property is a generalized quaternion group. Among the finite Abelian groups, only the cyclic $p$-groups (cf. $p$-group; Cyclic group) have this property. The generalized quaternion groups and the cyclic $p$-groups are the only $p$-groups admitting a proper $L$-homomorphism, that is, a homomorphism of the lattice of subgroups onto some lattice $L$ that is not an isomorphism.

Sometimes the term "quaternion group" is used to denote various subgroups of the multiplicative group of the algebra of quaternions and related topological groups.

References

[1] M. Hall jr., "Group theory" , Macmillan (1959)


Comments

The imbedding $x\mapsto i$, $y\mapsto j$ of the quaternion group $H$ into the quaternion algebra gives a surjective algebra homomorphism of the group algebra $\mathbf R[H]$ to the quaternion algebra, exhibiting the latter as the quotient of $\mathbf R[H]$ by the ideal $(x^2+1)$.

How to Cite This Entry:
Quaternion group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quaternion_group&oldid=32679
This article was adapted from an original article by N.N. Vil'yams (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article