Namespaces
Variants
Actions

Difference between revisions of "Logarithmic summation method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
One of the methods for summing series of numbers. A series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l0606601.png" /> with partial sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l0606602.png" /> is summable by the logarithmic method to the sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l0606603.png" /> if the logarithmic mean
+
{{TEX|done}}
 +
One of the methods for summing series of numbers. A series $\sum_{k=0}^\infty a_k$ with partial sums $s_n$ is summable by the logarithmic method to the sum $s$ if the logarithmic mean
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l0606604.png" /></td> </tr></table>
+
$$\sigma_m=\frac{1}{\sum_{k=0}^m\frac{1}{k+1}}\left(s_0+\frac{s_1}{2}+\ldots+\frac{s_m}{m+1}\right)$$
  
converges to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l0606605.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l0606606.png" />. The logarithmic summation method is the [[Riesz summation method|Riesz summation method]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l0606607.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l0606608.png" />. It is equivalent to and compatible (cf. [[Compatibility of summation methods|Compatibility of summation methods]]) with the Riesz summation method <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l0606609.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060660/l06066010.png" /> and is more powerful than the summation method of arithmetical averages (cf. [[Arithmetical averages, summation method of|Arithmetical averages, summation method of]]).
+
converges to $s$ as $m\to\infty$. The logarithmic summation method is the [[Riesz summation method|Riesz summation method]] $(R,p_n)$ with $p_n=1/(n+1)$. It is equivalent to and compatible (cf. [[Compatibility of summation methods|Compatibility of summation methods]]) with the Riesz summation method $(R,\lambda_n,1)$ with $\lambda_n=\ln(n+1)$ and is more powerful than the summation method of arithmetical averages (cf. [[Arithmetical averages, summation method of|Arithmetical averages, summation method of]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Riesz,  "Sur la sommation des séries de Dirichlet"  ''C.R. Acad. Sci. Paris'' , '''149'''  (1909)  pp. 18–21</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.H. Hardy,  "Divergent series" , Clarendon Press  (1949)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Riesz,  "Sur la sommation des séries de Dirichlet"  ''C.R. Acad. Sci. Paris'' , '''149'''  (1909)  pp. 18–21</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.H. Hardy,  "Divergent series" , Clarendon Press  (1949)</TD></TR></table>

Revision as of 15:07, 1 August 2014

One of the methods for summing series of numbers. A series $\sum_{k=0}^\infty a_k$ with partial sums $s_n$ is summable by the logarithmic method to the sum $s$ if the logarithmic mean

$$\sigma_m=\frac{1}{\sum_{k=0}^m\frac{1}{k+1}}\left(s_0+\frac{s_1}{2}+\ldots+\frac{s_m}{m+1}\right)$$

converges to $s$ as $m\to\infty$. The logarithmic summation method is the Riesz summation method $(R,p_n)$ with $p_n=1/(n+1)$. It is equivalent to and compatible (cf. Compatibility of summation methods) with the Riesz summation method $(R,\lambda_n,1)$ with $\lambda_n=\ln(n+1)$ and is more powerful than the summation method of arithmetical averages (cf. Arithmetical averages, summation method of).

References

[1] F. Riesz, "Sur la sommation des séries de Dirichlet" C.R. Acad. Sci. Paris , 149 (1909) pp. 18–21
[2] G.H. Hardy, "Divergent series" , Clarendon Press (1949)
How to Cite This Entry:
Logarithmic summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Logarithmic_summation_method&oldid=32663
This article was adapted from an original article by I.I. Volkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article