Namespaces
Variants
Actions

Difference between revisions of "Maximal invariant"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
An [[Invariant statistic|invariant statistic]] that takes different values on the different orbits generated by a group of one-to-one measurable transformations of the [[Sampling space|sampling space]]. Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m0629701.png" /> is a sampling space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m0629702.png" /> is a group of one-to-one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m0629703.png" />-measurable transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m0629704.png" /> onto itself, then an invariant statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m0629705.png" /> is a maximal invariant if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m0629706.png" /> implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m0629707.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m0629708.png" />. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m0629709.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m06297010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m06297011.png" /> is the group of orthogonal transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m06297012.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m06297013.png" />, then the statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062970/m06297014.png" /> is a maximal invariant. Any invariant statistic is a function of the maximal invariant.
+
{{TEX|done}}
 +
An [[Invariant statistic|invariant statistic]] that takes different values on the different orbits generated by a group of one-to-one measurable transformations of the [[Sampling space|sampling space]]. Thus, if $(\mathfrak X,\mathfrak B)$ is a sampling space and $G=\{g\}$ is a group of one-to-one $\mathfrak B$-measurable transformations of $\mathfrak X$ onto itself, then an invariant statistic $T(x)$ is a maximal invariant if $T(x_2)=T(x_1)$ implies that $x_2=gx_1$ for some $g\in G$. For example, if $\mathfrak X=\mathbf R^n$, $x=(x_1,\ldots,x_2)^T$, $G=\{\Gamma\}$ is the group of orthogonal transformations $\mathbf R^n\to\mathbf R^n$, and $y=\Gamma x$, then the statistic $T(x)=\sum x_i^2$ is a maximal invariant. Any invariant statistic is a function of the maximal invariant.
  
 
Maximal invariants are used for the construction of invariant tests (cf. [[Invariant test|Invariant test]]).
 
Maximal invariants are used for the construction of invariant tests (cf. [[Invariant test|Invariant test]]).

Latest revision as of 14:43, 1 August 2014

An invariant statistic that takes different values on the different orbits generated by a group of one-to-one measurable transformations of the sampling space. Thus, if $(\mathfrak X,\mathfrak B)$ is a sampling space and $G=\{g\}$ is a group of one-to-one $\mathfrak B$-measurable transformations of $\mathfrak X$ onto itself, then an invariant statistic $T(x)$ is a maximal invariant if $T(x_2)=T(x_1)$ implies that $x_2=gx_1$ for some $g\in G$. For example, if $\mathfrak X=\mathbf R^n$, $x=(x_1,\ldots,x_2)^T$, $G=\{\Gamma\}$ is the group of orthogonal transformations $\mathbf R^n\to\mathbf R^n$, and $y=\Gamma x$, then the statistic $T(x)=\sum x_i^2$ is a maximal invariant. Any invariant statistic is a function of the maximal invariant.

Maximal invariants are used for the construction of invariant tests (cf. Invariant test).

References

[1] E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1959)
[2] S. Zacks, "The theory of statistical inference" , Wiley (1975)
[3] G.P. Klimov, "Invariant inferences in statistics" , Moscow (1973) (In Russian)
How to Cite This Entry:
Maximal invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximal_invariant&oldid=32661
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article