Difference between revisions of "Integrating factor"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
''of an ordinary first-order differential equation | ''of an ordinary first-order differential equation | ||
− | + | $$P(x,y)dx+Q(x,y)dy=0$$ | |
'' | '' | ||
− | A function | + | A function $\mu=\mu(x,y)\not\equiv0$ with the property that |
− | + | $$\mu(x,y)P(x,y)dx+\mu(x,y)Q(x,y)dy=0$$ | |
− | is a [[Differential equation with total differential|differential equation with total differential]]. E.g., for the linear equation | + | is a [[Differential equation with total differential|differential equation with total differential]]. E.g., for the linear equation $y'+a(x)y=f(x)$, or $(a(x)y-f(x))dx+dy=0$, the function $\mu=\exp\int a(x)dx$ is an integrating factor. If in a domain $D$ where $P^2+Q^2\neq0$ equation |
− | has a smooth [[General integral|general integral]] | + | has a smooth [[General integral|general integral]] $U(x,y)=C$, then it has an infinite number of integrating factors. If $P(x,y)$ and $Q(x,y)$ have continuous partial derivatives in a domain $D$ where $P^2+Q^2\neq0$, then any particular (non-trivial) solution of the partial differential equation |
− | + | $$Q\frac{\partial u}{\partial x}-P\frac{\partial u}{\partial y}+\mu\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)=0\tag{2}$$ | |
− | can be taken as integrating factor, see [[#References|[1]]]. However, a general method for finding solutions of | + | can be taken as integrating factor, see [[#References|[1]]]. However, a general method for finding solutions of \ref{2} does not exist, and hence it is only in exceptional cases that one succeeds in finding an integrating factor for a concrete equation , cf. [[#References|[2]]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.W. [V.V. Stepanov] Stepanow, "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint (1971)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.W. [V.V. Stepanov] Stepanow, "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1. Gewöhnliche Differentialgleichungen''' , Chelsea, reprint (1971)</TD></TR></table> |
Revision as of 11:34, 1 August 2014
of an ordinary first-order differential equation
$$P(x,y)dx+Q(x,y)dy=0$$
A function $\mu=\mu(x,y)\not\equiv0$ with the property that
$$\mu(x,y)P(x,y)dx+\mu(x,y)Q(x,y)dy=0$$
is a differential equation with total differential. E.g., for the linear equation $y'+a(x)y=f(x)$, or $(a(x)y-f(x))dx+dy=0$, the function $\mu=\exp\int a(x)dx$ is an integrating factor. If in a domain $D$ where $P^2+Q^2\neq0$ equation
has a smooth general integral $U(x,y)=C$, then it has an infinite number of integrating factors. If $P(x,y)$ and $Q(x,y)$ have continuous partial derivatives in a domain $D$ where $P^2+Q^2\neq0$, then any particular (non-trivial) solution of the partial differential equation
$$Q\frac{\partial u}{\partial x}-P\frac{\partial u}{\partial y}+\mu\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)=0\tag{2}$$
can be taken as integrating factor, see [1]. However, a general method for finding solutions of \ref{2} does not exist, and hence it is only in exceptional cases that one succeeds in finding an integrating factor for a concrete equation , cf. [2].
References
[1] | W.W. [V.V. Stepanov] Stepanow, "Lehrbuch der Differentialgleichungen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian) |
[2] | E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 1. Gewöhnliche Differentialgleichungen , Chelsea, reprint (1971) |
Integrating factor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integrating_factor&oldid=32650