|
|
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f1100802.png" /> inequality'' | + | {{TEX|done}} |
| + | ''$xyz$ inequality'' |
| | | |
− | An inequality for linear extensions of a finite [[Partially ordered set|partially ordered set]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f1100803.png" />. Elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f1100804.png" /> are incomparable if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f1100805.png" /> and neither <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f1100806.png" /> nor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f1100807.png" />. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f1100808.png" /> a generic linear order extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f1100809.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008010.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008011.png" /> be the number of linear extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008012.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008013.png" /> be the number of linear extensions in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008014.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008015.png" />. | + | An inequality for linear extensions of a finite [[Partially ordered set|partially ordered set]] $(X,\prec)$. Elements $x,y\in X$ are incomparable if $x\neq y$ and neither $x\prec y$ nor $y\prec x$. Denote by $<_0$ a generic linear order extension of $\prec$ on $X$, let $N$ be the number of linear extensions $<_0$, and let $N(a_1<_0b_1,\ldots,a_n<_0b_n)$ be the number of linear extensions in which $a_i<_0b_i$ for $i=1,\ldots,n$. |
| | | |
− | The Fishburn–Shepp inequality says that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008018.png" /> are mutually incomparable members of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008019.png" />, then | + | The Fishburn–Shepp inequality says that if $x$, $y$ and $z$ are mutually incomparable members of $(X,\prec)$, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008020.png" /></td> </tr></table> | + | $$N(x<_0 y)N(x<_0 z)<N(x<_0 y,x<_0 z)N.$$ |
| | | |
− | This was first proved for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008021.png" /> in [[#References|[a3]]], then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008022.png" /> in [[#References|[a2]]]. The [[Ahlswede–Daykin inequality|Ahlswede–Daykin inequality]] [[#References|[a1]]] plays a key role in the proof. | + | This was first proved for $\leq$ in [[#References|[a3]]], then for $<$ in [[#References|[a2]]]. The [[Ahlswede–Daykin inequality|Ahlswede–Daykin inequality]] [[#References|[a1]]] plays a key role in the proof. |
| | | |
| The inequality is also written as | | The inequality is also written as |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008023.png" /></td> </tr></table> | + | $$\mu(x<_0y)\mu(x<_0z)<\mu(x<_0y,x<_0z),$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008024.png" /> denotes the [[Probability|probability]] that a randomly chosen linear extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008025.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008026.png" /> satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008027.png" />. When written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008028.png" />, one sees that the probability of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008029.png" /> increases when it is true that also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110080/f11008030.png" />. Some plausible related inequalities are false [[#References|[a3]]]. | + | where $\mu(A)$ denotes the [[Probability|probability]] that a randomly chosen linear extension $<_0$ of $\prec$ satisfies $A$. When written as $\mu(x<_0y,x<_0z)/\mu(x<_0y)>\mu(x<_0z)$, one sees that the probability of $x<_0z$ increases when it is true that also $x<_0y$. Some plausible related inequalities are false [[#References|[a3]]]. |
| | | |
| See also [[Correlation inequalities|Correlation inequalities]]; [[FKG inequality|FKG inequality]]; [[Holley inequality|Holley inequality]]. | | See also [[Correlation inequalities|Correlation inequalities]]; [[FKG inequality|FKG inequality]]; [[Holley inequality|Holley inequality]]. |
Revision as of 08:23, 1 August 2014
$xyz$ inequality
An inequality for linear extensions of a finite partially ordered set $(X,\prec)$. Elements $x,y\in X$ are incomparable if $x\neq y$ and neither $x\prec y$ nor $y\prec x$. Denote by $<_0$ a generic linear order extension of $\prec$ on $X$, let $N$ be the number of linear extensions $<_0$, and let $N(a_1<_0b_1,\ldots,a_n<_0b_n)$ be the number of linear extensions in which $a_i<_0b_i$ for $i=1,\ldots,n$.
The Fishburn–Shepp inequality says that if $x$, $y$ and $z$ are mutually incomparable members of $(X,\prec)$, then
$$N(x<_0 y)N(x<_0 z)<N(x<_0 y,x<_0 z)N.$$
This was first proved for $\leq$ in [a3], then for $<$ in [a2]. The Ahlswede–Daykin inequality [a1] plays a key role in the proof.
The inequality is also written as
$$\mu(x<_0y)\mu(x<_0z)<\mu(x<_0y,x<_0z),$$
where $\mu(A)$ denotes the probability that a randomly chosen linear extension $<_0$ of $\prec$ satisfies $A$. When written as $\mu(x<_0y,x<_0z)/\mu(x<_0y)>\mu(x<_0z)$, one sees that the probability of $x<_0z$ increases when it is true that also $x<_0y$. Some plausible related inequalities are false [a3].
See also Correlation inequalities; FKG inequality; Holley inequality.
References
[a1] | R. Ahlswede, D.E. Daykin, "An inequality for the weights of two families, their unions and intersections" Z. Wahrscheinlichkeitsth. verw. Gebiete , 43 (1978) pp. 183–185 |
[a2] | P.C. Fishburn, "A correlational inequality for linear extensions of a poset" Order , 1 (1984) pp. 127–137 |
[a3] | L.A. Shepp, "The XYZ conjecture and the FKG inequality" Ann. of Probab. , 10 (1982) pp. 824–827 |
How to Cite This Entry:
Fishburn-Shepp inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fishburn-Shepp_inequality&oldid=32629
This article was adapted from an original article by P.C. FishburnL.A. Shepp (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article