|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| ''simple periodic function'' | | ''simple periodic function'' |
| | | |
− | A [[Periodic function|periodic function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s0854401.png" /> of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s0854402.png" /> all periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s0854403.png" /> of which are integer multiples of a single unique fundamental, or primitive, period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s0854404.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s0854405.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s0854406.png" />). For example, the [[Exponential function|exponential function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s0854407.png" /> is an entire simply-periodic function with fundamental period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s0854408.png" />, and the [[Trigonometric functions|trigonometric functions]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s0854409.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s08544010.png" /> are meromorphic simply-periodic functions with fundamental period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s08544011.png" />. | + | A [[Periodic function|periodic function]] $f(z)$ of the complex variable $z$ all periods $p$ of which are integer multiples of a single unique fundamental, or primitive, period $2\omega\neq0$, i.e. $p=2n\omega$ ($n\in\mathbf Z$). For example, the [[Exponential function|exponential function]] $e^z$ is an entire simply-periodic function with fundamental period $2\omega=2\pi i$, and the [[Trigonometric functions|trigonometric functions]] $\tan z$ and $\operatorname{cotan}z$ are meromorphic simply-periodic functions with fundamental period $2\omega=\pi$. |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | More generally, a simply-periodic function on a linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s08544012.png" /> is a periodic function whose periods are integer multiples of some basic period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085440/s08544013.png" />. A non-constant continuous periodic function of a real variable is necessarily simply-periodic. | + | More generally, a simply-periodic function on a linear space $X$ is a periodic function whose periods are integer multiples of some basic period $2\omega\in X$. A non-constant continuous periodic function of a real variable is necessarily simply-periodic. |
Revision as of 08:14, 27 April 2014
simple periodic function
A periodic function $f(z)$ of the complex variable $z$ all periods $p$ of which are integer multiples of a single unique fundamental, or primitive, period $2\omega\neq0$, i.e. $p=2n\omega$ ($n\in\mathbf Z$). For example, the exponential function $e^z$ is an entire simply-periodic function with fundamental period $2\omega=2\pi i$, and the trigonometric functions $\tan z$ and $\operatorname{cotan}z$ are meromorphic simply-periodic functions with fundamental period $2\omega=\pi$.
More generally, a simply-periodic function on a linear space $X$ is a periodic function whose periods are integer multiples of some basic period $2\omega\in X$. A non-constant continuous periodic function of a real variable is necessarily simply-periodic.
How to Cite This Entry:
Simply-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Simply-periodic_function&oldid=31936
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article