Namespaces
Variants
Actions

Difference between revisions of "Diagonal matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
Line 1: Line 1:
 +
{{TEX|done}}
 
A square matrix in which all entries — with the possible exception of the elements on the main diagonal — are zero.
 
A square matrix in which all entries — with the possible exception of the elements on the main diagonal — are zero.
  
Line 4: Line 5:
  
 
====Comments====
 
====Comments====
I.e. an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031490/d0314901.png" /> diagonal matrix over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031490/d0314902.png" /> has the form
+
I.e. an $(n\times n)$ diagonal matrix over a field $K$ has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031490/d0314903.png" /></td> </tr></table>
+
$$\begin{pmatrix}a_1&0&\ldots&0\\0&a_2&\ldots&0\\\ldots&\ldots&\ldots&\ldots\\0&\ldots&\ldots&a_n\end{pmatrix},$$
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031490/d0314904.png" /> are elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031490/d0314905.png" />.
+
where the $a_i$ are elements of $K$.

Revision as of 15:10, 23 April 2014

A square matrix in which all entries — with the possible exception of the elements on the main diagonal — are zero.


Comments

I.e. an $(n\times n)$ diagonal matrix over a field $K$ has the form

$$\begin{pmatrix}a_1&0&\ldots&0\\0&a_2&\ldots&0\\\ldots&\ldots&\ldots&\ldots\\0&\ldots&\ldots&a_n\end{pmatrix},$$

where the $a_i$ are elements of $K$.

How to Cite This Entry:
Diagonal matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Diagonal_matrix&oldid=31902
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article