|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| One of the [[Trigonometric functions|trigonometric functions]]: | | One of the [[Trigonometric functions|trigonometric functions]]: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c0266301.png" /></td> </tr></table>
| + | $$y=\cos x.$$ |
| | | |
− | Its domain of definition is the entire real line; its range of values is the closed interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c0266302.png" />; the cosine is an even periodic function (with period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c0266303.png" />). The cosine and the sine are related via the formula | + | Its domain of definition is the entire real line; its range of values is the closed interval $[-1,1]$; the cosine is an even periodic function (with period $2\pi$). The cosine and the sine are related via the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c0266304.png" /></td> </tr></table>
| + | $$\sin^2x+\cos^2x=1.$$ |
| | | |
| The cosine and the secant are related via the formula | | The cosine and the secant are related via the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c0266305.png" /></td> </tr></table>
| + | $$\cos x=\frac{1}{\sec x}.$$ |
| | | |
| The derivative of the cosine is: | | The derivative of the cosine is: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c0266306.png" /></td> </tr></table>
| + | $$(\cos x)'=-\sin x.$$ |
| | | |
| The integral of the cosine is: | | The integral of the cosine is: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c0266307.png" /></td> </tr></table>
| + | $$\int\cos xdx=\sin x+C.$$ |
| | | |
| The series expansion is: | | The series expansion is: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c0266308.png" /></td> </tr></table>
| + | $$\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots,\quad-\infty<x<\infty.$$ |
| | | |
| The inverse function is the arccosine. | | The inverse function is the arccosine. |
| | | |
− | The cosine and sine of a complex argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c0266309.png" /> are related to the exponential function by Euler's formula: | + | The cosine and sine of a complex argument $z$ are related to the exponential function by Euler's formula: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663010.png" /></td> </tr></table>
| + | $$e^{iz}=\cos z+i\sin z.$$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663011.png" /> is a real number, then | + | If $x$ is a real number, then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663012.png" /></td> </tr></table>
| + | $$\cos x=\frac{e^{ix}+e^{-ix}}{2}.$$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663013.png" /> (a purely imaginary number), then | + | If $z=ix$ (a purely imaginary number), then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663014.png" /></td> </tr></table>
| + | $$\cos ix=\frac{e^x+e^{-x}}{2}=\cosh x,$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663015.png" /> is the hyperbolic cosine. | + | where $\cosh x$ is the hyperbolic cosine. |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | A geometric interpretation of the cosine of an argument (angle) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663016.png" /> is as follows. Consider the unit circle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663017.png" /> in the (complex) plane with origin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663018.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663019.png" /> denote the angle between the radius (thought of as varying) and the positive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663020.png" />-axis. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663021.png" /> is equal to the (signed) distance from the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663022.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663023.png" /> corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663024.png" /> to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026630/c02663025.png" />-axis. See also [[Sine|Sine]]. | + | A geometric interpretation of the cosine of an argument (angle) $\phi$ is as follows. Consider the unit circle $T$ in the (complex) plane with origin $0$. Let $\phi$ denote the angle between the radius (thought of as varying) and the positive $x$-axis. Then $\cos\phi$ is equal to the (signed) distance from the point $e^{i\phi}$ on $T$ corresponding to $\phi$ to the $x$-axis. See also [[Sine|Sine]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1''' , Chelsea (1977) (Translated from Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1''' , Chelsea (1977) (Translated from Russian)</TD></TR></table> |
One of the trigonometric functions:
$$y=\cos x.$$
Its domain of definition is the entire real line; its range of values is the closed interval $[-1,1]$; the cosine is an even periodic function (with period $2\pi$). The cosine and the sine are related via the formula
$$\sin^2x+\cos^2x=1.$$
The cosine and the secant are related via the formula
$$\cos x=\frac{1}{\sec x}.$$
The derivative of the cosine is:
$$(\cos x)'=-\sin x.$$
The integral of the cosine is:
$$\int\cos xdx=\sin x+C.$$
The series expansion is:
$$\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\ldots,\quad-\infty<x<\infty.$$
The inverse function is the arccosine.
The cosine and sine of a complex argument $z$ are related to the exponential function by Euler's formula:
$$e^{iz}=\cos z+i\sin z.$$
If $x$ is a real number, then
$$\cos x=\frac{e^{ix}+e^{-ix}}{2}.$$
If $z=ix$ (a purely imaginary number), then
$$\cos ix=\frac{e^x+e^{-x}}{2}=\cosh x,$$
where $\cosh x$ is the hyperbolic cosine.
A geometric interpretation of the cosine of an argument (angle) $\phi$ is as follows. Consider the unit circle $T$ in the (complex) plane with origin $0$. Let $\phi$ denote the angle between the radius (thought of as varying) and the positive $x$-axis. Then $\cos\phi$ is equal to the (signed) distance from the point $e^{i\phi}$ on $T$ corresponding to $\phi$ to the $x$-axis. See also Sine.
References
[1] | A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian) |