|
|
Line 1: |
Line 1: |
| + | {{TEX|done}} |
| One of the [[Trigonometric functions|trigonometric functions]]: | | One of the [[Trigonometric functions|trigonometric functions]]: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c0266901.png" /></td> </tr></table>
| + | $$y=\operatorname{cotan}x=\frac{\cos x}{\sin x};$$ |
| | | |
− | other notations are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c0266902.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c0266903.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c0266904.png" />. The domain of definition is the entire real line with the exception of the points with abscissas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c0266905.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c0266906.png" />. The cotangent is an unbounded odd periodic function (with period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c0266907.png" />). The cotangent and the tangent are related by | + | other notations are $\cot x$, $\operatorname{cotg}x$ and $\operatorname{ctg}x$. The domain of definition is the entire real line with the exception of the points with abscissas $x=\pi n$, $n=0,\pm1,\pm2,\ldots$. The cotangent is an unbounded odd periodic function (with period $\pi$). The cotangent and the tangent are related by |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c0266908.png" /></td> </tr></table>
| + | $$\operatorname{cotan}x=\frac{1}{\tan x}.$$ |
| | | |
| The inverse function to the cotangent is called the arccotangent. The derivative of the cotangent is given by: | | The inverse function to the cotangent is called the arccotangent. The derivative of the cotangent is given by: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c0266909.png" /></td> </tr></table>
| + | $$(\operatorname{cotan}x)'=\frac{-1}{\sin^2x}.$$ |
| | | |
| The integral of the cotangent is given by: | | The integral of the cotangent is given by: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c02669010.png" /></td> </tr></table>
| + | $$\int\operatorname{cotan}xdx=\ln|{\sin x}|+C.$$ |
| | | |
| The series expansion is: | | The series expansion is: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c02669011.png" /></td> </tr></table>
| + | $$\operatorname{cotan}x=\frac1x-\frac x3-\frac{x^3}{45}-\ldots,\quad0<|x|<\pi.$$ |
| | | |
− | The cotangent of a complex argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c02669012.png" /> is a meromorphic function with poles at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c02669013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026690/c02669014.png" />. | + | The cotangent of a complex argument $z$ is a meromorphic function with poles at the points $z=\pi n$, $n=0,\pm1,\pm2,\ldots$. |
| | | |
| | | |
Revision as of 13:49, 23 April 2014
One of the trigonometric functions:
$$y=\operatorname{cotan}x=\frac{\cos x}{\sin x};$$
other notations are $\cot x$, $\operatorname{cotg}x$ and $\operatorname{ctg}x$. The domain of definition is the entire real line with the exception of the points with abscissas $x=\pi n$, $n=0,\pm1,\pm2,\ldots$. The cotangent is an unbounded odd periodic function (with period $\pi$). The cotangent and the tangent are related by
$$\operatorname{cotan}x=\frac{1}{\tan x}.$$
The inverse function to the cotangent is called the arccotangent. The derivative of the cotangent is given by:
$$(\operatorname{cotan}x)'=\frac{-1}{\sin^2x}.$$
The integral of the cotangent is given by:
$$\int\operatorname{cotan}xdx=\ln|{\sin x}|+C.$$
The series expansion is:
$$\operatorname{cotan}x=\frac1x-\frac x3-\frac{x^3}{45}-\ldots,\quad0<|x|<\pi.$$
The cotangent of a complex argument $z$ is a meromorphic function with poles at the points $z=\pi n$, $n=0,\pm1,\pm2,\ldots$.
See also Tangent, curve of the; Sine; Cosine.
How to Cite This Entry:
Cotangent. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cotangent&oldid=31899
This article was adapted from an original article by Yu.A. Gor'kov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article