Difference between revisions of "Integral domain"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
+ | {{TEX|done}} | ||
''integral ring'' | ''integral ring'' | ||
A [[Commutative ring|commutative ring]] with identity and without divisors of zero (cf. [[Divisor|Divisor]]). Any field, and also any ring with identity contained in a field, is an integral domain. Conversely, an integral domain can be imbedded in a field. Such an imbedding is given by the construction of the field of fractions (see [[Fractions, ring of|Fractions, ring of]]). | A [[Commutative ring|commutative ring]] with identity and without divisors of zero (cf. [[Divisor|Divisor]]). Any field, and also any ring with identity contained in a field, is an integral domain. Conversely, an integral domain can be imbedded in a field. Such an imbedding is given by the construction of the field of fractions (see [[Fractions, ring of|Fractions, ring of]]). | ||
− | If | + | If $A$ is an integral domain, then the ring of polynomials $A[X]$ and the ring of formal power series $A[[X]]$ over $A$ are also integral domains. If $A$ is a commutative ring with identity and $I$ is any ideal in $A$, then the ring $A/I$ is an integral domain if and only if $I$ is a [[Prime ideal|prime ideal]]. A ring $A$ without nilpotents is an integral domain if and only if the spectrum of $A$ is an irreducible topological space (cf. [[Spectrum of a ring|Spectrum of a ring]]). |
− | Sometimes commutativity of | + | Sometimes commutativity of $A$ is not required in the definition of an integral domain. Skew-fields and subrings of a skew-field containing the identity are examples of non-commutative integral domains. However, it is not true, in general, that an arbitrary non-commutative integral domain can be imbedded in a skew-field (see [[#References|[2]]], and [[Imbedding of rings|Imbedding of rings]]). |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1965)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.M. Cohn, "Free rings and their relations" , Acad. Press (1985)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1965)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.M. Cohn, "Free rings and their relations" , Acad. Press (1985)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR></table> |
Revision as of 14:53, 15 April 2014
integral ring
A commutative ring with identity and without divisors of zero (cf. Divisor). Any field, and also any ring with identity contained in a field, is an integral domain. Conversely, an integral domain can be imbedded in a field. Such an imbedding is given by the construction of the field of fractions (see Fractions, ring of).
If $A$ is an integral domain, then the ring of polynomials $A[X]$ and the ring of formal power series $A[[X]]$ over $A$ are also integral domains. If $A$ is a commutative ring with identity and $I$ is any ideal in $A$, then the ring $A/I$ is an integral domain if and only if $I$ is a prime ideal. A ring $A$ without nilpotents is an integral domain if and only if the spectrum of $A$ is an irreducible topological space (cf. Spectrum of a ring).
Sometimes commutativity of $A$ is not required in the definition of an integral domain. Skew-fields and subrings of a skew-field containing the identity are examples of non-commutative integral domains. However, it is not true, in general, that an arbitrary non-commutative integral domain can be imbedded in a skew-field (see [2], and Imbedding of rings).
References
[1] | S. Lang, "Algebra" , Addison-Wesley (1965) |
[2] | P.M. Cohn, "Free rings and their relations" , Acad. Press (1985) |
[3] | C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973) |
Integral domain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Integral_domain&oldid=31727