Difference between revisions of "Demoulin surface"
From Encyclopedia of Mathematics
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | A surface formed by a conjugate net of lines the tangents to which form two | + | {{TEX|done}} |
+ | A surface formed by a conjugate net of lines the tangents to which form two $W$-congruences — a so-called singular conjugate system. Only the Demoulin surfaces permit a [[Projective deformation|projective deformation]]. Introduced by A. Demoulin . | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> A. Demoulin, "Sur les surfaces | + | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> A. Demoulin, "Sur les surfaces $R$ et les surfaces $\Omega$" ''C.R. Acad. Sci. Paris'' , '''153''' (1911) pp. 590–593</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> A. Demoulin, "Sur les surfaces $R$ et les surfaces $\Omega$" ''C.R. Acad. Sci. Paris'' , '''153''' (1911) pp. 705–707</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> A. Demoulin, "Sur les surfaces $R$" ''C.R. Acad. Sci. Paris'' , '''153''' (1911) pp. 797–799</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> A. Demoulin, "Sur les surfaces $\Omega$" ''C.R. Acad. Sci. Paris'' , '''153''' (1911) pp. 927–929</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.P. Finikov, "Projective-differential geometry" , Moscow-Leningrad (1937) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian)</TD></TR></table> |
====Comments==== | ====Comments==== | ||
− | The terminology concerned with Demoulin surfaces differs. In [[#References|[a1]]] they are roughly characterized by the fact that the Demoulin tetrahedron (see [[Demoulin quadrilateral|Demoulin quadrilateral]]) degenerates to one point. The existence of a projective deformation is a more general condition (see [[#References|[a1]]], Par. 119) The problem of projective deformation is related to | + | The terminology concerned with Demoulin surfaces differs. In [[#References|[a1]]] they are roughly characterized by the fact that the Demoulin tetrahedron (see [[Demoulin quadrilateral|Demoulin quadrilateral]]) degenerates to one point. The existence of a projective deformation is a more general condition (see [[#References|[a1]]], Par. 119) The problem of projective deformation is related to $R$-congruences, which are special $W$-congruences (see [[#References|[a1]]] and [[#References|[2]]], [[#References|[3]]]). |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Bol, "Projective Differentialgeometrie" , '''2''' , Vandenhoeck & Ruprecht (1954)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.P. Lane, "A treatise on projective differential geometry" , Univ. Chicago Press (1942)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G. Bol, "Projective Differentialgeometrie" , '''2''' , Vandenhoeck & Ruprecht (1954)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.P. Lane, "A treatise on projective differential geometry" , Univ. Chicago Press (1942)</TD></TR></table> |
Latest revision as of 10:12, 12 April 2014
A surface formed by a conjugate net of lines the tangents to which form two $W$-congruences — a so-called singular conjugate system. Only the Demoulin surfaces permit a projective deformation. Introduced by A. Demoulin .
References
[1a] | A. Demoulin, "Sur les surfaces $R$ et les surfaces $\Omega$" C.R. Acad. Sci. Paris , 153 (1911) pp. 590–593 |
[1b] | A. Demoulin, "Sur les surfaces $R$ et les surfaces $\Omega$" C.R. Acad. Sci. Paris , 153 (1911) pp. 705–707 |
[1c] | A. Demoulin, "Sur les surfaces $R$" C.R. Acad. Sci. Paris , 153 (1911) pp. 797–799 |
[1d] | A. Demoulin, "Sur les surfaces $\Omega$" C.R. Acad. Sci. Paris , 153 (1911) pp. 927–929 |
[2] | S.P. Finikov, "Projective-differential geometry" , Moscow-Leningrad (1937) (In Russian) |
[3] | A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian) |
Comments
The terminology concerned with Demoulin surfaces differs. In [a1] they are roughly characterized by the fact that the Demoulin tetrahedron (see Demoulin quadrilateral) degenerates to one point. The existence of a projective deformation is a more general condition (see [a1], Par. 119) The problem of projective deformation is related to $R$-congruences, which are special $W$-congruences (see [a1] and [2], [3]).
References
[a1] | G. Bol, "Projective Differentialgeometrie" , 2 , Vandenhoeck & Ruprecht (1954) |
[a2] | E.P. Lane, "A treatise on projective differential geometry" , Univ. Chicago Press (1942) |
How to Cite This Entry:
Demoulin surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Demoulin_surface&oldid=31612
Demoulin surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Demoulin_surface&oldid=31612
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article