|
|
Line 1: |
Line 1: |
− | ''with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p0724101.png" />'' | + | {{TEX|done}} |
| + | ''with centre $S$'' |
| | | |
− | A mapping of a plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p0724102.png" /> into a plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p0724103.png" /> under which each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p0724104.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p0724105.png" /> is put into correspondence with the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p0724106.png" /> of intersection of the straight line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p0724107.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p0724108.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p0724109.png" /> is not parallel to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241010.png" />, see Fig.). | + | A mapping of a plane $\pi$ into a plane $\pi_1$ under which each point $M$ in $\pi$ is put into correspondence with the point $M_1$ of intersection of the straight line $SM$ with $\pi_1$ (if $SM$ is not parallel to $\pi_1$, see Fig.). |
| | | |
| <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p072410a.gif" /> | | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p072410a.gif" /> |
Line 7: |
Line 8: |
| Figure: p072410a | | Figure: p072410a |
| | | |
− | More generally, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241012.png" /> be proper subspaces of identical dimension in a projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241013.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241014.png" /> be a subspace of maximal dimension not having points in common with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241015.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241016.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241017.png" /> be a subspace contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241018.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241019.png" /> be the subspace of minimal dimension containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241021.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241022.png" /> be the intersection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241024.png" />. | + | More generally, let $V$ and $V_1$ be proper subspaces of identical dimension in a projective space $\Omega$ and let $T$ be a subspace of maximal dimension not having points in common with $V$ or $V_1$. Let $U$ be a subspace contained in $V$, let $W$ be the subspace of minimal dimension containing $U$ and $T$ and let $U_1$ be the intersection of $W$ and $V_1$. |
| | | |
− | The correspondence by which each subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241025.png" /> contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241026.png" /> is put into correspondence with the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241027.png" /> contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241028.png" /> is called a perspective mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241029.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241030.png" /> with perspective centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241031.png" />. | + | The correspondence by which each subspace $U$ contained in $V$ is put into correspondence with the subspace $U_1$ contained in $V_1$ is called a perspective mapping from $V$ into $V_1$ with perspective centre $T$. |
| | | |
− | A perspective is a [[Collineation|collineation]]. If the subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241033.png" /> intersect, then each point in the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241034.png" /> corresponds to itself. | + | A perspective is a [[Collineation|collineation]]. If the subspaces $V$ and $V_1$ intersect, then each point in the subspace $V\cap V_1$ corresponds to itself. |
| | | |
− | If projective coordinates are introduced into the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072410/p07241036.png" />, then a perspective correspondence can be specified by a linear mapping. | + | If projective coordinates are introduced into the spaces $V$ and $V_1$, then a perspective correspondence can be specified by a linear mapping. |
| | | |
| ====References==== | | ====References==== |
Latest revision as of 22:17, 11 April 2014
with centre $S$
A mapping of a plane $\pi$ into a plane $\pi_1$ under which each point $M$ in $\pi$ is put into correspondence with the point $M_1$ of intersection of the straight line $SM$ with $\pi_1$ (if $SM$ is not parallel to $\pi_1$, see Fig.).
Figure: p072410a
More generally, let $V$ and $V_1$ be proper subspaces of identical dimension in a projective space $\Omega$ and let $T$ be a subspace of maximal dimension not having points in common with $V$ or $V_1$. Let $U$ be a subspace contained in $V$, let $W$ be the subspace of minimal dimension containing $U$ and $T$ and let $U_1$ be the intersection of $W$ and $V_1$.
The correspondence by which each subspace $U$ contained in $V$ is put into correspondence with the subspace $U_1$ contained in $V_1$ is called a perspective mapping from $V$ into $V_1$ with perspective centre $T$.
A perspective is a collineation. If the subspaces $V$ and $V_1$ intersect, then each point in the subspace $V\cap V_1$ corresponds to itself.
If projective coordinates are introduced into the spaces $V$ and $V_1$, then a perspective correspondence can be specified by a linear mapping.
References
[1] | E. Artin, "Geometric algebra" , Interscience (1957) |
[2] | N.A. Glagolev, "Projective geometry" , Moscow (1963) (In Russian) |
Perspective mappings are also called central projections or perspectivities.
References
[a1] | M. Berger, "Geometry" , I , Springer (1987) |
[a2] | H. Busemann, P.J. Kelly, "Projective geometry and projective metrics" , Acad. Press (1953) |
[a3] | H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963) |
[a4] | H.S.M. Coxeter, "Projective geometry" , Blaisdell (1964) |
[a5] | H.S.M. Coxeter, "The real projective plane" , McGraw-Hill (1949) |
How to Cite This Entry:
Perspective. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perspective&oldid=31589
This article was adapted from an original article by P.S. Modenov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article