Namespaces
Variants
Actions

Difference between revisions of "Sine theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
 
Line 2: Line 2:
 
For any triangle in the Euclidean plane with sides $a,b,c$ and opposite angles $A,B,C$, respectively, the equalities
 
For any triangle in the Euclidean plane with sides $a,b,c$ and opposite angles $A,B,C$, respectively, the equalities
  
$$\frac{a}{\sin A}=frac{b}{\sin B}=frac{c}{\sin C}=2R$$
+
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$
  
 
hold, where $R$ is the radius of the circumscribed circle.
 
hold, where $R$ is the radius of the circumscribed circle.
Line 11: Line 11:
 
In spherical geometry the sine theorem reads
 
In spherical geometry the sine theorem reads
  
$$\frac{\sin a}{\sin A}=frac{\sin b}{\sin B}=frac{\sin c}{\sin C},$$
+
$$\frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C},$$
  
 
and in Lobachevskii geometry:
 
and in Lobachevskii geometry:
  
$$\frac{\sinh a}{\sin A}=frac{\sinh b}{\sin B}=frac{\sinh c}{\sin C}.$$
+
$$\frac{\sinh a}{\sin A}=\frac{\sinh b}{\sin B}=\frac{\sinh c}{\sin C}.$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.S.M. Coxeter,  S.L. Greitzer,  "Geometry revisited" , Math. Assoc. Amer.  (1975)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.S.M. Coxeter,  S.L. Greitzer,  "Geometry revisited" , Math. Assoc. Amer.  (1975)</TD></TR></table>

Latest revision as of 14:29, 19 March 2014

For any triangle in the Euclidean plane with sides $a,b,c$ and opposite angles $A,B,C$, respectively, the equalities

$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$

hold, where $R$ is the radius of the circumscribed circle.


Comments

In spherical geometry the sine theorem reads

$$\frac{\sin a}{\sin A}=\frac{\sin b}{\sin B}=\frac{\sin c}{\sin C},$$

and in Lobachevskii geometry:

$$\frac{\sinh a}{\sin A}=\frac{\sinh b}{\sin B}=\frac{\sinh c}{\sin C}.$$

References

[a1] H.S.M. Coxeter, S.L. Greitzer, "Geometry revisited" , Math. Assoc. Amer. (1975)
How to Cite This Entry:
Sine theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sine_theorem&oldid=31398
This article was adapted from an original article by Yu.A. Gor'kov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article