Difference between revisions of "Anger function"
(Importing text file) |
(Texxed) |
||
Line 1: | Line 1: | ||
+ | {{MSC|34}} | ||
+ | {{TEX|done}} | ||
+ | |||
The function | The function | ||
+ | \begin{equation}\label{e:Anger} | ||
+ | {\bf J}_\nu (x) = \frac{1}{\pi} \int_0^\pi \cos\, (\nu \theta - x \sin \theta)\, d\theta | ||
+ | \end{equation} | ||
+ | where $x$ is a complex variable and $\nu$ a complex parameter. The functions are named after C. T. Anger who in {{Cite|An}} studied the integral on the right hand side of \eqref{e:Anger} when the upper limit is $2\pi$ rather than $\pi$ . The Anger function satisfies the inhomogeneous [[Bessel equation|Bessel equation]] | ||
+ | \[ | ||
+ | x^2 y'' + xy' + (x^2 - \nu^2) y = \frac{(z-\nu) \sin \nu\pi}{\pi} \, | ||
+ | \] | ||
+ | (see 10.12 in {{Cite|Wa}}). | ||
− | + | For integers $\nu =n$ the Anger function coincides with the Bessel function $J_\nu$ of order $n$ (cf. [[Bessel functions]]). For non-integer $\nu$ the following expansion is valid: | |
− | + | \[ | |
− | + | {\bf J}_\nu (x) = \frac{\sin \nu\pi}{\nu \pi} \left[ 1 - \frac{x^2}{2^2-\nu^2} + \frac{x^4}{(2^2-\nu^2)(4^2 - \nu^2)} + \ldots \right] | |
− | + | + \frac{\sin \nu\pi}{\pi}\left[ \frac{x}{1-\nu^2} - \frac{x^3}{(1-\nu^2) (3^2-\nu^2)} + \ldots \right] | |
− | + | \] | |
− | + | For $|x|$ large and $|{\rm arg}\, x| < \pi$ we moreover have the asymptotic expansion | |
− | For integers | + | \[ |
− | + | {\bf J_\nu} (x) = - J_\nu (x) + \frac{\sin \nu\pi}{\pi x} \left[1 - \frac{1-\nu^2}{x^2} + | |
− | + | \frac{(1-\nu^2)(3^2-\nu^2)}{x^4} + \ldots \right] - \nu \frac{\sin \nu \pi}{\pi x} \left[ | |
− | + | \frac{1}{x} - \frac{2^2 - \nu^2}{x^3} + \frac{(2^2-\nu^2)(4^2-\nu^2)}{x^5} + \ldots \right]\, . | |
− | + | \] | |
− | + | If $\nu$ is not an integer, the Anger function is related to the [[Weber function]] ${\bf E}_\nu$ by the following equations: | |
− | + | \begin{align} | |
− | + | & \sin \nu\pi\, {\bf J}_\nu (x) = \cos \nu \pi\, {\bf E}_\nu (x) - {\bf E}_{-\nu} (x)\\ | |
− | < | + | & \sin \nu\pi\, {\bf E}_\nu (x) = {\bf J}_{-\nu} (x) - \cos \nu\pi\, {\bf J}_\nu (x)\, |
− | + | \end{align} | |
− | + | (cf. 10.11 in {{Cite|Wa}}). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | is | ||
− | |||
− | |||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|An}}||valign="top"| C.T. Anger, ''Neueste Schr. d. Naturf. d. Ges. i. Danzig'' , '''5''' (1855) pp. 1–29 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Wa}}||valign="top"| G.N. Watson, "A treatise on the theory of Bessel functions", '''1–2''', Cambridge Univ. Press (1952) {{MR|1349110}} {{MR|1570252}} {{MR|0010746}} {{MR|1520278}} {{ZBL|0849.33001}} {{ZBL|0174.36202}} {{ZBL|0063.08184}} | ||
+ | |- | ||
+ | |} |
Latest revision as of 09:02, 22 February 2014
2020 Mathematics Subject Classification: Primary: 34-XX [MSN][ZBL]
The function \begin{equation}\label{e:Anger} {\bf J}_\nu (x) = \frac{1}{\pi} \int_0^\pi \cos\, (\nu \theta - x \sin \theta)\, d\theta \end{equation} where $x$ is a complex variable and $\nu$ a complex parameter. The functions are named after C. T. Anger who in [An] studied the integral on the right hand side of \eqref{e:Anger} when the upper limit is $2\pi$ rather than $\pi$ . The Anger function satisfies the inhomogeneous Bessel equation \[ x^2 y'' + xy' + (x^2 - \nu^2) y = \frac{(z-\nu) \sin \nu\pi}{\pi} \, \] (see 10.12 in [Wa]).
For integers $\nu =n$ the Anger function coincides with the Bessel function $J_\nu$ of order $n$ (cf. Bessel functions). For non-integer $\nu$ the following expansion is valid: \[ {\bf J}_\nu (x) = \frac{\sin \nu\pi}{\nu \pi} \left[ 1 - \frac{x^2}{2^2-\nu^2} + \frac{x^4}{(2^2-\nu^2)(4^2 - \nu^2)} + \ldots \right] + \frac{\sin \nu\pi}{\pi}\left[ \frac{x}{1-\nu^2} - \frac{x^3}{(1-\nu^2) (3^2-\nu^2)} + \ldots \right] \] For $|x|$ large and $|{\rm arg}\, x| < \pi$ we moreover have the asymptotic expansion \[ {\bf J_\nu} (x) = - J_\nu (x) + \frac{\sin \nu\pi}{\pi x} \left[1 - \frac{1-\nu^2}{x^2} + \frac{(1-\nu^2)(3^2-\nu^2)}{x^4} + \ldots \right] - \nu \frac{\sin \nu \pi}{\pi x} \left[ \frac{1}{x} - \frac{2^2 - \nu^2}{x^3} + \frac{(2^2-\nu^2)(4^2-\nu^2)}{x^5} + \ldots \right]\, . \] If $\nu$ is not an integer, the Anger function is related to the Weber function ${\bf E}_\nu$ by the following equations: \begin{align} & \sin \nu\pi\, {\bf J}_\nu (x) = \cos \nu \pi\, {\bf E}_\nu (x) - {\bf E}_{-\nu} (x)\\ & \sin \nu\pi\, {\bf E}_\nu (x) = {\bf J}_{-\nu} (x) - \cos \nu\pi\, {\bf J}_\nu (x)\, \end{align} (cf. 10.11 in [Wa]).
References
[An] | C.T. Anger, Neueste Schr. d. Naturf. d. Ges. i. Danzig , 5 (1855) pp. 1–29 |
[Wa] | G.N. Watson, "A treatise on the theory of Bessel functions", 1–2, Cambridge Univ. Press (1952) MR1349110 MR1570252 MR0010746 MR1520278 Zbl 0849.33001 Zbl 0174.36202 Zbl 0063.08184 |
Anger function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Anger_function&oldid=31330