|
|
Line 1: |
Line 1: |
− | If a (single-valued) function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m0649201.png" /> of a complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m0649202.png" /> in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m0649203.png" /> is continuous and if its integral over any closed rectifiable contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m0649204.png" /> is equal to zero, that is, if
| + | {{MSC|30-XX|32-XX}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m0649205.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | A fundamental theorem in complex analysis first proved by G. Morera in {{Cite|Mo}}, which is an (incomplete) converse of the [[Cauchy integral theorem]]. The theorem states the following. |
| | | |
− | then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m0649206.png" /> is an [[Analytic function|analytic function]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m0649207.png" />. This theorem was obtained by G. Morera [[#References|[1]]].
| + | '''Theorem''' |
| + | Let be an open set and f: D\to \mathbb C a continuous function. If |
| + | the integral |
| + | \begin{equation}\label{e:integral} |
| + | \int_\gamma f(z)\, dz = 0 |
| + | \end{equation} |
| + | vanishes for every [[Rectifiable curve|rectifiable]] contour \gamma\subset D, then the function f is [[Holomorphic function|holomorphic]]. |
| + | |
| + | The integral in \eqref{e:integral} must be understood in the sense of the usual [[Integration on manifolds|integration]] of a 1-[[Differential form|form]]. In particular, if $z: [0,T]\to D is a Lipschitz parametrization of the contour \gamma$, then the right hand side of \eqref{e:integral} is given by |
| + | \[ |
| + | \int_0^T f (z(t))\, \dot{z} (t)\, dt\, . |
| + | \] |
| + | Indeed the assumption of the theorem can be considerably weakened: to conclude that f is holomorphic it suffices to know \eqref{e:integral} whenever \gamma is the boundary of any triangle \Delta\subset\subset D. |
| | | |
− | The conditions of Morera's theorem can be weakened by restricting the requirement on vanishing integrals (*) to those taken over the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m0649208.png" /> of any triangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m0649209.png" /> that is compactly contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492010.png" />, i.e. such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492011.png" />. Morera's theorem is an (incomplete) converse of the [[Cauchy integral theorem|Cauchy integral theorem]] and is one of the basic theorems in the theory of analytic functions.
| + | Morera's theorem can be generalized to functions of several complex variables. |
− | | |
− | Morera's theorem can be generalized to functions of several complex variables. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492012.png" /> be a function of the complex variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492014.png" />, continuous in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492015.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492016.png" /> and such that its integral vanishes when taken over the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492017.png" /> of any prismatic domain compactly contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492018.png" /> of the form | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492019.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492020.png" /></td> </tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492023.png" />, are line segments in the planes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492024.png" /> with end points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492026.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492027.png" /> is a triangle in the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492028.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492029.png" /> is a holomorphic function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064920/m06492030.png" />.
| |
− | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Morera, "Un teorema fondamentale nella teorica delle funzioni di una variabili complessa" ''Rend. R. Ist. Lomb. Sci. Lettere'' , '''19''' (1886) pp. 304–308</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''1''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B.V. Shabat, "Introduction of complex analysis" , '''1–2''' , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.S. Vladimirov, "Methods of the theory of functions of several complex variables" , M.I.T. (1966) (Translated from Russian)</TD></TR></table>
| |
− | | |
− | | |
− | | |
− | ====Comments====
| |
| | | |
| + | '''Theorem''' |
| + | Let D\subset \mathbb C^n be an open set and f: D \to \mathbb C a continuous function. Denote by f (z)\, dz the (complex) differential form |
| + | \[ |
| + | f (z)\, dz_1\wedge dz_2\wedge \ldots \wedge dz_n\, . |
| + | \] |
| + | Consider the class \mathcal{P} of ''prismatic'' domains \Gamma\subset\subset D of the form |
| + | \[ |
| + | [a_1, b_1] \times \ldots \times [a_{i-1}, b_{i-1}]\times \partial \Delta \times [a_{i+1}, b_{i+1}] \times \ldots \times [a_n b_n]\, , |
| + | \] |
| + | where \Delta\subset \mathbb C is a arbitrary triangle, a_k, b_k are complex numbers and [a_k, b_k] denotes the segment \sigma\subset \mathbb C given by \{\lambda a_k + (1-\lambda b_k): \lambda \in [0,1]\}. If |
| + | \[ |
| + | \int_\Gamma f(z)\, dz = 0\, \qquad\qquad \mbox{for any}\, \Gamma \in \mathcal{P}\, , |
| + | \] |
| + | then f is holomorphic. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Remmert, "Funktionentheorie" , '''1''' , Springer (1984)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.B. Conway, "Functions of one complex variable" , Springer (1978)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Co}}|| J.B. Conway, "Functions of one complex variable" , Springer (1973) {{MR|0447532}} {{ZBL|0277.30001}} |
| + | |- |
| + | |valign="top"|{{Ref|Re}}|| R. Remmert, "Funktionentheorie" , '''1''' , Springer (1984) |
| + | |- |
| + | |} |
Latest revision as of 17:23, 12 January 2014
2020 Mathematics Subject Classification: Primary: 30-XX Secondary: 32-XX [MSN][ZBL]
A fundamental theorem in complex analysis first proved by G. Morera in [Mo], which is an (incomplete) converse of the Cauchy integral theorem. The theorem states the following.
Theorem
Let D\subset \mathbb C be an open set and f: D\to \mathbb C a continuous function. If
the integral
\begin{equation}\label{e:integral}
\int_\gamma f(z)\, dz = 0
\end{equation}
vanishes for every rectifiable contour \gamma\subset D, then the function f is holomorphic.
The integral in \eqref{e:integral} must be understood in the sense of the usual integration of a 1-form. In particular, if z: [0,T]\to D is a Lipschitz parametrization of the contour \gamma, then the right hand side of \eqref{e:integral} is given by
\int_0^T f (z(t))\, \dot{z} (t)\, dt\, .
Indeed the assumption of the theorem can be considerably weakened: to conclude that f is holomorphic it suffices to know \eqref{e:integral} whenever \gamma is the boundary of any triangle \Delta\subset\subset D.
Morera's theorem can be generalized to functions of several complex variables.
Theorem
Let D\subset \mathbb C^n be an open set and f: D \to \mathbb C a continuous function. Denote by f (z)\, dz the (complex) differential form
f (z)\, dz_1\wedge dz_2\wedge \ldots \wedge dz_n\, .
Consider the class \mathcal{P} of prismatic domains \Gamma\subset\subset D of the form
[a_1, b_1] \times \ldots \times [a_{i-1}, b_{i-1}]\times \partial \Delta \times [a_{i+1}, b_{i+1}] \times \ldots \times [a_n b_n]\, ,
where \Delta\subset \mathbb C is a arbitrary triangle, a_k, b_k are complex numbers and [a_k, b_k] denotes the segment \sigma\subset \mathbb C given by \{\lambda a_k + (1-\lambda b_k): \lambda \in [0,1]\}. If
\int_\Gamma f(z)\, dz = 0\, \qquad\qquad \mbox{for any}\, \Gamma \in \mathcal{P}\, ,
then f is holomorphic.
References
[Co] |
J.B. Conway, "Functions of one complex variable" , Springer (1973) MR0447532 Zbl 0277.30001
|
[Re] |
R. Remmert, "Funktionentheorie" , 1 , Springer (1984)
|
How to Cite This Entry:
Morera theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Morera_theorem&oldid=31239
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article