Difference between revisions of "Cauchy kernel"
(Importing text file) |
|||
Line 1: | Line 1: | ||
− | + | {{TEX|done}} | |
+ | {{MSC|30-XX}} | ||
− | + | The term refers usual to the function $\mathbb C^2 \setminus \Delta \ni (\zeta, z) \mapsto \frac{1}{\zeta-z}$, where $\Delta \subset \mathbb C^2$ is the diagonal $\{(z,\zeta): z=\zeta\}$. Such function is the [[Kernel function|kernel]] of the [[Cauchy integral|Cauchy integral]], which gives a powerful identity for [[Holomorphic function|holomorphic functions]] of one complex variable. In the case of the unit circle one has the following relationship between the Cauchy kernel and the [[Hilbert kernel]]: if $\zeta = e^{i\tau}$ and $z = e^{it}$, with $\tau, t \in \mathbb S^1$, then | |
+ | \[ | ||
+ | \frac{d\zeta}{\zeta-z} = \frac{1}{2} \left(\cot \frac{\tau-t}{2} + i\right)\, d\tau\, . | ||
+ | \] | ||
− | + | Some authors use the term for the function | |
+ | \[ | ||
+ | \frac{1}{2\pi i (\zeta-z)}\, . | ||
+ | \] | ||
− | + | See also [[Kernel of an integral operator]]. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | See also [[ | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Al}}|| L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1966) {{MR|0188405}} {{ZBL|0154.31904}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ma}}|| A.I. Markushevich, "Theory of functions of a complex variable" , '''1–3''' , Chelsea (1977) (Translated from Russian) {{MR|0444912}} {{ZBL|0357.30002}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ru}}|| W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24 {{MR|0344043}} {{ZBL|0278.26001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ti}}|| E.C. Titchmarsh, "The theory of functions" , Oxford Univ. Press (1939) {{MR|0593142}} {{MR|0197687}} {{MR|1523319}} {{ZBL|65.0302.01}} | ||
+ | |- | ||
+ | |} |
Revision as of 16:09, 5 January 2014
2020 Mathematics Subject Classification: Primary: 30-XX [MSN][ZBL]
The term refers usual to the function $\mathbb C^2 \setminus \Delta \ni (\zeta, z) \mapsto \frac{1}{\zeta-z}$, where $\Delta \subset \mathbb C^2$ is the diagonal $\{(z,\zeta): z=\zeta\}$. Such function is the kernel of the Cauchy integral, which gives a powerful identity for holomorphic functions of one complex variable. In the case of the unit circle one has the following relationship between the Cauchy kernel and the Hilbert kernel: if $\zeta = e^{i\tau}$ and $z = e^{it}$, with $\tau, t \in \mathbb S^1$, then \[ \frac{d\zeta}{\zeta-z} = \frac{1}{2} \left(\cot \frac{\tau-t}{2} + i\right)\, d\tau\, . \]
Some authors use the term for the function \[ \frac{1}{2\pi i (\zeta-z)}\, . \]
See also Kernel of an integral operator.
References
[Al] | L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1966) MR0188405 Zbl 0154.31904 |
[Ma] | A.I. Markushevich, "Theory of functions of a complex variable" , 1–3 , Chelsea (1977) (Translated from Russian) MR0444912 Zbl 0357.30002 |
[Ru] | W. Rudin, "Real and complex analysis" , McGraw-Hill (1974) pp. 24 MR0344043 Zbl 0278.26001 |
[Ti] | E.C. Titchmarsh, "The theory of functions" , Oxford Univ. Press (1939) MR0593142 MR0197687 MR1523319 Zbl 65.0302.01 |
Cauchy kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cauchy_kernel&oldid=31229