Namespaces
Variants
Actions

Difference between revisions of "Abel criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
Line 1: Line 1:
Abel's criterion for series of numbers. If the series
+
{{MSC|40A05}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a0101001.png" /></td> </tr></table>
+
{{MSC|30B30}}
  
is convergent and if the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a0101002.png" /> form a monotone bounded sequence, then the series
+
{{MSC|40A30}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a0101003.png" /></td> </tr></table>
+
The term might refer to
 +
* a criterion for the convergence of series of real numbers
 +
* a related criterion for the convergence of series of complex numbers, used often to determine the convergence of power series at the radius of convergence
 +
* a related criterion for the uniform convergence of a series of functions.  
 +
All these criteria can be proved using [[Summation by parts|summation by parts]], which is also called Abel's lemma or Abel's transformation and it is a discrete version of [[Integration by parts|integration by parts]].
  
is convergent.
+
====Criterion for series of real numbers====
 +
If $\sum a_n$ is a convergent series of real numbers and $\{b_n\}$ is a bounded monotone sequence of real numbers, then $\sum_n a_n b_n$ converges.
  
Abel's criterion for series of functions. The series
+
====Abel test for power series====
 +
Assume that $\{a_n\}$ is a vanishing and monotonically decreasing sequence of real numbers such that the radius of convergence of the power series $\sum_n a_n z^n$ is $1$. Then the series converges at every $z$ with $|z|=1$, except possibly for $z=1$. A notable application is given by the power series
 +
\begin{equation}\label{e:log}
 +
\sum_{n\geq 1} \frac{z^n}{n}\,
 +
\end{equation}
 +
the power expansion of (a branch of) the [[Logarithmic function|logarithmic function]] $\ln (1-z)$. The Abel criterion implies that the series converges at every $z\neq 1$ with $|z|=1$. Observe that the series reduces to the [[Harmonic series]] at $z=1$, where it diverges.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a0101004.png" /></td> </tr></table>
+
====Abel criterion for uniform convergence====
 
+
Let $g_n: A \to \mathbb R$ a bounded sequence of functions such that $g_{n+1}\leq g_n$ and $f_n: A\to \mathbb C$ (or more generally $f_n : A \to \mathbb R^k$) a sequence of functions such that $\sum_n f_n$ converges uniformly. Then also the series $\sum_n f_n g_n$ converges uniformly.
converges uniformly on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a0101005.png" /> if the series
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a0101006.png" /></td> </tr></table>
 
 
 
converges uniformly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a0101007.png" /> and if the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a0101008.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a0101009.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a01010010.png" />, form a monotone sequence that is uniformly bounded on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a01010011.png" />. An Abel criterion for the uniform convergence of integrals
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a01010012.png" /></td> </tr></table>
 
 
 
which depend on a parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010100/a01010013.png" />, can be formulated in a similar manner.
 
 
 
The Abel criteria can be strengthened (see, for example, [[Dedekind criterion (convergence of series)|Dedekind criterion (convergence of series)]]). See also [[Dirichlet criterion (convergence of series)|Dirichlet criterion (convergence of series)]]; [[Abel transformation|Abel transformation]].
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"G.M. Fichtenholz,   "Differential und Integralrechnung" , '''1''' , Deutsch. Verlag Wissenschaft.  (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.D. Kudryavtsev,  "Mathematical analysis" , '''1''' , Moscow  (1973)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , '''1–2''' , Cambridge Univ. Press  (1952)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Ca}}|| H. Cartan, "Elementary Theory of Analytic Functions of One or Several Complex Variable", Dover (1995).
 +
|-
 +
|valign="top"|{{Ref|Fi}}|| G.M. Fichtenholz,   "Differential und Integralrechnung" , '''1''' , Deutsch. Verlag Wissenschaft.  (1964)
 +
|-
 +
|valign="top"|{{Ref|Ku}}|| L.D. Kudryavtsev,  "Mathematical analysis" , '''1''' , Moscow  (1973)  (In Russian)
 +
|-
 +
|valign="top"|{{Ref|WW}}|| E.T. Whittaker,  G.N. Watson,  "A course of modern analysis" , '''1–2''' , Cambridge Univ. Press  (1952)
 +
|}

Latest revision as of 12:44, 10 December 2013

2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]

2020 Mathematics Subject Classification: Primary: 30B30 [MSN][ZBL]

2020 Mathematics Subject Classification: Primary: 40A30 [MSN][ZBL]

The term might refer to

  • a criterion for the convergence of series of real numbers
  • a related criterion for the convergence of series of complex numbers, used often to determine the convergence of power series at the radius of convergence
  • a related criterion for the uniform convergence of a series of functions.

All these criteria can be proved using summation by parts, which is also called Abel's lemma or Abel's transformation and it is a discrete version of integration by parts.

Criterion for series of real numbers

If $\sum a_n$ is a convergent series of real numbers and $\{b_n\}$ is a bounded monotone sequence of real numbers, then $\sum_n a_n b_n$ converges.

Abel test for power series

Assume that $\{a_n\}$ is a vanishing and monotonically decreasing sequence of real numbers such that the radius of convergence of the power series $\sum_n a_n z^n$ is $1$. Then the series converges at every $z$ with $|z|=1$, except possibly for $z=1$. A notable application is given by the power series \begin{equation}\label{e:log} \sum_{n\geq 1} \frac{z^n}{n}\, \end{equation} the power expansion of (a branch of) the logarithmic function $\ln (1-z)$. The Abel criterion implies that the series converges at every $z\neq 1$ with $|z|=1$. Observe that the series reduces to the Harmonic series at $z=1$, where it diverges.

Abel criterion for uniform convergence

Let $g_n: A \to \mathbb R$ a bounded sequence of functions such that $g_{n+1}\leq g_n$ and $f_n: A\to \mathbb C$ (or more generally $f_n : A \to \mathbb R^k$) a sequence of functions such that $\sum_n f_n$ converges uniformly. Then also the series $\sum_n f_n g_n$ converges uniformly.

References

[Ca] H. Cartan, "Elementary Theory of Analytic Functions of One or Several Complex Variable", Dover (1995).
[Fi] G.M. Fichtenholz, "Differential und Integralrechnung" , 1 , Deutsch. Verlag Wissenschaft. (1964)
[Ku] L.D. Kudryavtsev, "Mathematical analysis" , 1 , Moscow (1973) (In Russian)
[WW] E.T. Whittaker, G.N. Watson, "A course of modern analysis" , 1–2 , Cambridge Univ. Press (1952)
How to Cite This Entry:
Abel criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Abel_criterion&oldid=30926
This article was adapted from an original article by L.P. Kuptsov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article