Difference between revisions of "Logarithmic convergence criterion"
(Importing text file) |
|||
Line 1: | Line 1: | ||
− | + | {{MSC|40A05}} | |
+ | {{TEX|done}} | ||
− | + | A criterion for the convergence of series $\sum a_n$ of positive real numbers. If there are $\alpha > 0$ and $N$ such that | |
− | + | \begin{equation}\label{e:compare1} | |
− | + | \frac{\ln (a_n)^{-1}}{\ln n} \geq 1 + \alpha \qquad \forall n\geq N | |
− | + | \end{equation} | |
− | + | then the series converges. If there is $N$ such that | |
+ | \begin{equation}\label{e:compare2} | ||
+ | \frac{\ln (a_n)^{-1}}{\ln n} \leq 1 \qquad \forall n \geq N | ||
+ | \end{equation} | ||
+ | then the series diverges. Indeed \eqref{e:compare1} implies that $\sum_n a_n$ is dominated by $\sum \frac{1}{n^{1+\alpha}}$ (namely that | ||
+ | \[ | ||
+ | \left.a_n \leq \frac{1}{n^{1+\alpha}}\right)\, , | ||
+ | \] | ||
+ | whereas \eqref{e:compare2} implies that $\sum_n a_n$ dominates the [[Harmonic series|harmonic series]]. |
Latest revision as of 10:35, 10 December 2013
2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]
A criterion for the convergence of series $\sum a_n$ of positive real numbers. If there are $\alpha > 0$ and $N$ such that \begin{equation}\label{e:compare1} \frac{\ln (a_n)^{-1}}{\ln n} \geq 1 + \alpha \qquad \forall n\geq N \end{equation} then the series converges. If there is $N$ such that \begin{equation}\label{e:compare2} \frac{\ln (a_n)^{-1}}{\ln n} \leq 1 \qquad \forall n \geq N \end{equation} then the series diverges. Indeed \eqref{e:compare1} implies that $\sum_n a_n$ is dominated by $\sum \frac{1}{n^{1+\alpha}}$ (namely that \[ \left.a_n \leq \frac{1}{n^{1+\alpha}}\right)\, , \] whereas \eqref{e:compare2} implies that $\sum_n a_n$ dominates the harmonic series.
Logarithmic convergence criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Logarithmic_convergence_criterion&oldid=30921