Difference between revisions of "Complexification of a Lie group"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex,MR,ZBL,MSC) |
||
Line 1: | Line 1: | ||
− | + | {{MSC|22E}} | |
+ | {{TEX|done}} | ||
− | The complex Lie group | + | The ''complexification of a Lie group |
+ | $G$ over $\R$'' is | ||
+ | a complex Lie group $G_\C$ containing $G$ as a real Lie subgroup such that the Lie algebra $\def\fg{ {\mathfrak g}}\fg$ of $G$ is a real form of the Lie algebra $\fg_\C$ of $G_\C$ (see | ||
+ | [[Complexification of a Lie algebra|Complexification of a Lie algebra]]). One then says that the group $G$ is a real form of the Lie group $G_\C$. For example, the group $\def\U{ {\rm U}}\U(n)$ of all unitary matrices of order $n$ is a real form of the group $\def\GL{ {\rm GL}}\GL(n,\C)$ of all non-singular matrices of order $n$ with complex entries. | ||
− | There is a one-to-one correspondence between the complex-analytic linear representations of a connected simply-connected complex Lie group | + | There is a one-to-one correspondence between the complex-analytic linear representations of a connected simply-connected complex Lie group $G_\C$ and the real-analytic representations of its connected real form $G$, under which irreducible representations correspond to each other. This correspondence is set up in the following way: If $\rho$ is an (irreducible) finite-dimensional complex-analytic representation of $G_\C$, then the restriction of $\rho$ to $G$ is an (irreducible) real-analytic representation of $G$. |
− | Not every real Lie group has a complexification. In particular, a connected semi-simple Lie group has a complexification if and only if | + | Not every real Lie group has a complexification. In particular, a connected semi-simple Lie group has a complexification if and only if $G$ is linear, that is, is isomorphic to a subgroup of some group $\GL(n,\C)$. For example, the universal covering of the group of real second-order matrices with determinant 1 does not have a complexification. On the other hand, every compact Lie group has a complexification. |
− | The non-existence of complexifications for certain real Lie groups inspired the introduction of the more general notion of a universal complexification | + | The non-existence of complexifications for certain real Lie groups inspired the introduction of the more general notion of a universal complexification $(\tilde G,\tau)$ of a real Lie group $G$. Here $\tilde G$ is a complex Lie group and $\tau : G\to \tilde G$ is a real-analytic homomorphism such that for every complex Lie group $H$ and every real-analytic homomorphism $\alpha : G\to H$ there exists a unique complex-analytic homomorphism $\beta : \tilde G\to H$ such that $\alpha=\beta\circ \tau$. The universal complexification of a Lie group always exists and is uniquely defined |
+ | {{Cite|Bo}}. Uniqueness means that if $(\tilde G'\tau')$ is another universal complexification of $\lambda : \tilde G\to \tilde G'$, then there is a natural isomorphism $\lambda\circ\tau = \tau'$ such that $\dim_\C\;\tilde G \le \dim_\R G$. In general, $G$, but if $G$ is simply connected, then $\dim_\C \tilde G = \dim_\R G$ and the kernel of $\tau$ is discrete. | ||
− | See also [[Form of an algebraic group|Form of an algebraic group]]. | + | See also |
+ | [[Form of an algebraic group|Form of an algebraic group]]. | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras", Addison-Wesley (1975) (Translated from French) {{MR|0682756}} {{ZBL|0319.17002}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Na}}||valign="top"| M.A. Naimark, "Theory of group representations", Springer (1982) (Translated from Russian) {{MR|0793377}} {{ZBL|0484.22018}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Zh}}||valign="top"| D.P. Zhelobenko, "Compact Lie groups and their representations", Amer. Math. Soc. (1973) (Translated from Russian) {{MR|0473097}} {{MR|0473098}} {{ZBL|0228.22013}} | ||
+ | |- | ||
+ | |} |
Revision as of 22:25, 21 November 2013
2020 Mathematics Subject Classification: Primary: 22E [MSN][ZBL]
The complexification of a Lie group $G$ over $\R$ is a complex Lie group $G_\C$ containing $G$ as a real Lie subgroup such that the Lie algebra $\def\fg{ {\mathfrak g}}\fg$ of $G$ is a real form of the Lie algebra $\fg_\C$ of $G_\C$ (see Complexification of a Lie algebra). One then says that the group $G$ is a real form of the Lie group $G_\C$. For example, the group $\def\U{ {\rm U}}\U(n)$ of all unitary matrices of order $n$ is a real form of the group $\def\GL{ {\rm GL}}\GL(n,\C)$ of all non-singular matrices of order $n$ with complex entries.
There is a one-to-one correspondence between the complex-analytic linear representations of a connected simply-connected complex Lie group $G_\C$ and the real-analytic representations of its connected real form $G$, under which irreducible representations correspond to each other. This correspondence is set up in the following way: If $\rho$ is an (irreducible) finite-dimensional complex-analytic representation of $G_\C$, then the restriction of $\rho$ to $G$ is an (irreducible) real-analytic representation of $G$.
Not every real Lie group has a complexification. In particular, a connected semi-simple Lie group has a complexification if and only if $G$ is linear, that is, is isomorphic to a subgroup of some group $\GL(n,\C)$. For example, the universal covering of the group of real second-order matrices with determinant 1 does not have a complexification. On the other hand, every compact Lie group has a complexification.
The non-existence of complexifications for certain real Lie groups inspired the introduction of the more general notion of a universal complexification $(\tilde G,\tau)$ of a real Lie group $G$. Here $\tilde G$ is a complex Lie group and $\tau : G\to \tilde G$ is a real-analytic homomorphism such that for every complex Lie group $H$ and every real-analytic homomorphism $\alpha : G\to H$ there exists a unique complex-analytic homomorphism $\beta : \tilde G\to H$ such that $\alpha=\beta\circ \tau$. The universal complexification of a Lie group always exists and is uniquely defined [Bo]. Uniqueness means that if $(\tilde G'\tau')$ is another universal complexification of $\lambda : \tilde G\to \tilde G'$, then there is a natural isomorphism $\lambda\circ\tau = \tau'$ such that $\dim_\C\;\tilde G \le \dim_\R G$. In general, $G$, but if $G$ is simply connected, then $\dim_\C \tilde G = \dim_\R G$ and the kernel of $\tau$ is discrete.
See also Form of an algebraic group.
References
[Bo] | N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras", Addison-Wesley (1975) (Translated from French) MR0682756 Zbl 0319.17002 |
[Na] | M.A. Naimark, "Theory of group representations", Springer (1982) (Translated from Russian) MR0793377 Zbl 0484.22018 |
[Zh] | D.P. Zhelobenko, "Compact Lie groups and their representations", Amer. Math. Soc. (1973) (Translated from Russian) MR0473097 MR0473098 Zbl 0228.22013 |
Complexification of a Lie group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Complexification_of_a_Lie_group&oldid=30726