|
|
Line 1: |
Line 1: |
− | A function in two variables on a [[Module|module]] (for example, on a vector space) which is linear in one variable and semi-linear in the other. More precisely, a sesquilinear form on a unitary module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s0847101.png" /> over an associative-commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s0847102.png" /> with an identity, equipped with an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s0847103.png" />, is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s0847104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s0847105.png" />, linear in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s0847106.png" /> for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s0847107.png" />, and semi-linear in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s0847108.png" /> for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s0847109.png" /> (see [[Semi-linear mapping|Semi-linear mapping]]). Analogously one defines a sesquilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471013.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471014.png" />-modules. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471015.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471016.png" />), one obtains the notion of a [[Bilinear form|bilinear form]] (or a [[Bilinear mapping|bilinear mapping]]). Another important example of a sesquilinear form is obtained when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471017.png" /> is a vector space over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471019.png" />. Special cases of sesquilinear forms are Hermitian forms (cf. [[Hermitian form|Hermitian form]]) (and also skew-Hermitian forms).
| + | {{MSC|15}} |
| + | {{TEX|done}} |
| | | |
− | Sesquilinear forms can also be considered on modules over a non-commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471020.png" />; in this case it is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471021.png" /> is an anti-automorphism, that is,
| + | A function in two variables on a |
| + | [[Module|module]] (for example, on a vector space) which is linear in one variable and semi-linear in the other. More precisely, a sesquilinear form on a unitary module $E$ over an associative-commutative ring $A$ with an identity, equipped with an automorphism $\def\s{\sigma}a\mapsto a^\s$, is a mapping $q:E\times E\to A$, $(x,y)\mapsto q(x,y)$, linear in $x$ for fixed $y$, and semi-linear in $y$ for fixed $x$ (see |
| + | [[Semi-linear mapping|Semi-linear mapping]]). Analogously one defines a sesquilinear mapping $E\times F\to G$, where $E$, $F$, $G$ are $A$-modules. In the case when $a^\s = a$ ($a\in A$), one obtains the notion of a |
| + | [[Bilinear form|bilinear form]] (or a |
| + | [[Bilinear mapping|bilinear mapping]]). Another important example of a sesquilinear form is obtained when $V$ is a vector space over the field $\C$ and $a^\s=\bar a$. Special cases of sesquilinear forms are Hermitian forms (cf. |
| + | [[Hermitian form|Hermitian form]]) (and also skew-Hermitian forms). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471022.png" /></td> </tr></table>
| + | Sesquilinear forms can also be considered on modules over a non-commutative ring $A$; in this case it is assumed that $\s$ is an anti-automorphism, that is, |
| | | |
| + | $$(ab)^\s = b^\s a^\s\quad a,b\in A.$$ |
| For sesquilinear forms it is possible to introduce many notions of the theory of bilinear forms, for example the notions of an orthogonal submodule, a left and a right kernel, a non-degenerate form, the matrix of the form in a given basis, the rank of the form, and conjugate homomorphisms. | | For sesquilinear forms it is possible to introduce many notions of the theory of bilinear forms, for example the notions of an orthogonal submodule, a left and a right kernel, a non-degenerate form, the matrix of the form in a given basis, the rank of the form, and conjugate homomorphisms. |
| | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre" , ''Eléments de mathématiques'' , '''2''' , Hermann (1942–1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1984)</TD></TR></table>
| |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471023.png" /> be a division ring with centre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471025.png" /> a right vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471026.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471027.png" /> be an anti-automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471028.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471029.png" /> is an automorphism of the underlying additive group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471031.png" />. A sesquilinear form relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471032.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471033.png" /> is a bi-additive mapping | + | Let $D$ be a division ring with centre $k$ and $V$ a right vector space over $D$. Let $\s$ be an anti-automorphism of $D$, i.e. $\s$ is an automorphism of the underlying additive group of $D$ and $\s(xy) =\s(y)\s(x)$. A sesquilinear form relative to $\s$ on $V$ is a bi-additive mapping |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471034.png" /></td> </tr></table>
| |
| | | |
| + | $$f : V\times V\to D$$ |
| such that | | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471035.png" /></td> </tr></table>
| + | $$f(vx,wy) = \s(x)f(v,w)y.$$ |
− | | + | Unless $f=0$, the anti-automorphism $\s$ is obviously uniquely determined by $f$. |
− | Unless <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471036.png" />, the anti-automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471037.png" /> is obviously uniquely determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471038.png" />. | |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471039.png" />. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471041.png" />-Hermitian form is a sesquilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471042.png" /> such that moreover
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471043.png" /></td> </tr></table>
| + | Let $\def\e{\epsilon}\e\in k\setminus \{0\}$. A $(\s,\e)$-Hermitian form is a sesquilinear form on $V$ such that moreover |
| | | |
− | One must then have <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471045.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471046.png" />. The concepts of a Hermitian, anti-Hermitian, symmetric, anti-symmetric, or bilinear form (or matrix) for complex vector spaces (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471047.png" /> complex conjugation) arise as the special cases of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471048.png" />-Hermitian form, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471049.png" />-Hermitian form, an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471050.png" />-Hermitian form, and an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471051.png" /> Hermitian form. | + | $$f(w,v)=\s (f(v,w))\e$$ |
| + | One must then have $\e\s(\e)=1$ and $\s^2(x)=\e x\e^{-1}$ for all $x\in D$. The concepts of a Hermitian, anti-Hermitian, symmetric, anti-symmetric, or bilinear form (or matrix) for complex vector spaces (with $\s = $ complex conjugation) arise as the special cases of a $(\s,1)$-Hermitian form, a $(\s,-1)$-Hermitian form, an $({\rm id},1)$-Hermitian form, and an $({\rm id},-1)$ Hermitian form. |
| | | |
− | Given a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471053.png" />. A subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471054.png" /> is totally isotropic if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084710/s08471055.png" />. The Witt index of a sesquilinear form is the dimension of a maximal totally-isotropic subspace. | + | Given a subspace $W\subset V$, $W^\perp = \{v\in V : f(v,w)=0 \textrm{ for all } w\in W\}$. A subspace $W$ is totally isotropic if $W\subset W^\perp$. The Witt index of a sesquilinear form is the dimension of a maximal totally-isotropic subspace. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tits, "Buildings and BN-pairs of spherical type" , Springer (1974) pp. Chapt. 8</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1963)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Algèbre", ''Eléments de mathématiques'', '''2''', Hermann (1942–1959) {{MR|0011070}} {{ZBL|0060.06808}} |
| + | |- |
| + | |valign="top"|{{Ref|Di}}||valign="top"| J.A. Dieudonné, "La géométrie des groups classiques", Springer (1963) {{ZBL|0221.20056}} |
| + | |- |
| + | |valign="top"|{{Ref|La}}||valign="top"| S. Lang, "Algebra", Addison-Wesley (1984) {{MR|0799862}} {{MR|0783636}} {{MR|0760079}} {{ZBL|0712.00001}} |
| + | |- |
| + | |valign="top"|{{Ref|Ti}}||valign="top"| J. Tits, "Buildings and BN-pairs of spherical type", Springer (1974) pp. Chapt. 8 {{ZBL|0295.20047}} |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 15-XX [MSN][ZBL]
A function in two variables on a
module (for example, on a vector space) which is linear in one variable and semi-linear in the other. More precisely, a sesquilinear form on a unitary module $E$ over an associative-commutative ring $A$ with an identity, equipped with an automorphism $\def\s{\sigma}a\mapsto a^\s$, is a mapping $q:E\times E\to A$, $(x,y)\mapsto q(x,y)$, linear in $x$ for fixed $y$, and semi-linear in $y$ for fixed $x$ (see
Semi-linear mapping). Analogously one defines a sesquilinear mapping $E\times F\to G$, where $E$, $F$, $G$ are $A$-modules. In the case when $a^\s = a$ ($a\in A$), one obtains the notion of a
bilinear form (or a
bilinear mapping). Another important example of a sesquilinear form is obtained when $V$ is a vector space over the field $\C$ and $a^\s=\bar a$. Special cases of sesquilinear forms are Hermitian forms (cf.
Hermitian form) (and also skew-Hermitian forms).
Sesquilinear forms can also be considered on modules over a non-commutative ring $A$; in this case it is assumed that $\s$ is an anti-automorphism, that is,
$$(ab)^\s = b^\s a^\s\quad a,b\in A.$$
For sesquilinear forms it is possible to introduce many notions of the theory of bilinear forms, for example the notions of an orthogonal submodule, a left and a right kernel, a non-degenerate form, the matrix of the form in a given basis, the rank of the form, and conjugate homomorphisms.
Let $D$ be a division ring with centre $k$ and $V$ a right vector space over $D$. Let $\s$ be an anti-automorphism of $D$, i.e. $\s$ is an automorphism of the underlying additive group of $D$ and $\s(xy) =\s(y)\s(x)$. A sesquilinear form relative to $\s$ on $V$ is a bi-additive mapping
$$f : V\times V\to D$$
such that
$$f(vx,wy) = \s(x)f(v,w)y.$$
Unless $f=0$, the anti-automorphism $\s$ is obviously uniquely determined by $f$.
Let $\def\e{\epsilon}\e\in k\setminus \{0\}$. A $(\s,\e)$-Hermitian form is a sesquilinear form on $V$ such that moreover
$$f(w,v)=\s (f(v,w))\e$$
One must then have $\e\s(\e)=1$ and $\s^2(x)=\e x\e^{-1}$ for all $x\in D$. The concepts of a Hermitian, anti-Hermitian, symmetric, anti-symmetric, or bilinear form (or matrix) for complex vector spaces (with $\s = $ complex conjugation) arise as the special cases of a $(\s,1)$-Hermitian form, a $(\s,-1)$-Hermitian form, an $({\rm id},1)$-Hermitian form, and an $({\rm id},-1)$ Hermitian form.
Given a subspace $W\subset V$, $W^\perp = \{v\in V : f(v,w)=0 \textrm{ for all } w\in W\}$. A subspace $W$ is totally isotropic if $W\subset W^\perp$. The Witt index of a sesquilinear form is the dimension of a maximal totally-isotropic subspace.
References
[Bo] |
N. Bourbaki, "Algèbre", Eléments de mathématiques, 2, Hermann (1942–1959) MR0011070 Zbl 0060.06808
|
[Di] |
J.A. Dieudonné, "La géométrie des groups classiques", Springer (1963) Zbl 0221.20056
|
[La] |
S. Lang, "Algebra", Addison-Wesley (1984) MR0799862 MR0783636 MR0760079 Zbl 0712.00001
|
[Ti] |
J. Tits, "Buildings and BN-pairs of spherical type", Springer (1974) pp. Chapt. 8 Zbl 0295.20047
|