Difference between revisions of "Möbius function"
(Remove material that does not appear to be attributed to a scholarly source) |
|||
Line 1: | Line 1: | ||
− | |||
An [[Arithmetic function|arithmetic function]] of natural argument: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642801.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642802.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642803.png" /> is divisible by the square of a prime number, otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642804.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642805.png" /> is the number of prime factors of the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642806.png" />. This function was introduced by A. Möbius in 1832. | An [[Arithmetic function|arithmetic function]] of natural argument: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642801.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642802.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642803.png" /> is divisible by the square of a prime number, otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642804.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642805.png" /> is the number of prime factors of the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m0642806.png" />. This function was introduced by A. Möbius in 1832. | ||
Line 7: | Line 6: | ||
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m06428010.png" /> is a constant. The fact that the mean value tends to zero as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m06428011.png" /> implies an asymptotic law for the [[Distribution of prime numbers|distribution of prime numbers]] in the natural series. | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m06428010.png" /> is a constant. The fact that the mean value tends to zero as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064280/m06428011.png" /> implies an asymptotic law for the [[Distribution of prime numbers|distribution of prime numbers]] in the natural series. | ||
− | |||
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Walfisz, "Weylsche Exponentialsummen in der neueren Zahlentheorie" , Deutsch. Verlag Wissenschaft. (1963)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Walfisz, "Weylsche Exponentialsummen in der neueren Zahlentheorie" , Deutsch. Verlag Wissenschaft. (1963)</TD></TR></table> | ||
− | + | ||
====Comments==== | ====Comments==== |
Revision as of 21:35, 31 August 2013
An arithmetic function of natural argument: , if is divisible by the square of a prime number, otherwise , where is the number of prime factors of the number . This function was introduced by A. Möbius in 1832.
The Möbius function is a multiplicative arithmetic function; if . It is used in the study of other arithmetic functions; it appears in inversion formulas (see, e.g. Möbius series). The following estimate is known for the mean value of the Möbius function [2]:
where is a constant. The fact that the mean value tends to zero as implies an asymptotic law for the distribution of prime numbers in the natural series.
References
[1] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) |
[2] | A. Walfisz, "Weylsche Exponentialsummen in der neueren Zahlentheorie" , Deutsch. Verlag Wissenschaft. (1963) |
Comments
The multiplicative arithmetic functions form a group under the convolution product . The Möbius function is in fact the inverse of the constant multiplicative function (defined by for all ) under this convolution product. From this there follows many "inversion formulas" , cf. e.g. Möbius series.
References
[a1] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Clarendon Press (1979) |
Möbius function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M%C3%B6bius_function&oldid=30292