Namespaces
Variants
Actions

Difference between revisions of "Leibniz criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (TeX encoding is done)
Line 1: Line 1:
 +
 +
 
''for convergence of an alternating series''
 
''for convergence of an alternating series''
  
 
If the terms of an alternating series
 
If the terms of an alternating series
 
+
\begin{equation}
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058090/l0580901.png" /></td> </tr></table>
+
\sum_{n=1}^{\infty}(-1)^{n+1}a_n,\quad a_n>0,
 
+
\end{equation}
decrease monotonically (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058090/l0580902.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058090/l0580903.png" />) and tend to zero (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058090/l0580904.png" />), then the series converges; moreover, a remainder of the series,
+
decrease monotonically ($a_n>a_{n+1}$, $n=1,2,\dots$) and tend to zero ( $\lim\limits_{n\to\infty}a_n=0$ ), then the series converges; moreover, a remainder of the series,
 
+
\begin{equation}
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058090/l0580905.png" /></td> </tr></table>
+
\sum_{k=n+1}^{\infty}(-1)^{k+1}a_k,
 
+
\end{equation}
 
has the sign of its first term and is less than it in absolute value. The criterion was established by G. Leibniz in 1682.
 
has the sign of its first term and is less than it in absolute value. The criterion was established by G. Leibniz in 1682.
  
  
 
+
====Examples====
====Comments====
+
* [[Leibniz_series|Leibniz series]] $\sum\limits_{n=1}^{\infty}\frac{(-1)^{n+1}}{2n-1}$.
 
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)</TD></TR></table>

Revision as of 09:52, 12 December 2012


for convergence of an alternating series

If the terms of an alternating series \begin{equation} \sum_{n=1}^{\infty}(-1)^{n+1}a_n,\quad a_n>0, \end{equation} decrease monotonically ($a_n>a_{n+1}$, $n=1,2,\dots$) and tend to zero ( $\lim\limits_{n\to\infty}a_n=0$ ), then the series converges; moreover, a remainder of the series, \begin{equation} \sum_{k=n+1}^{\infty}(-1)^{k+1}a_k, \end{equation} has the sign of its first term and is less than it in absolute value. The criterion was established by G. Leibniz in 1682.


Examples

References

[a1] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)
How to Cite This Entry:
Leibniz criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leibniz_criterion&oldid=29175
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article