Namespaces
Variants
Actions

Difference between revisions of "Poincaré inequality"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Created page with "Let $f\in W^1_p(\mathbb R^n)$, $1\leqslant p < n$ and $p^* = \frac{np}{n-p}$ then the following inequality holds \begin{equation}\label{eq:1} \Bigl(\int\limits_{B}|f(x)-f_B|^{...")
 
Line 3: Line 3:
 
\Bigl(\int\limits_{B}|f(x)-f_B|^{p^*}\,dx\Bigr)^{\frac{1}{p^*}} \leqslant C\Bigl(\int\limits_{B}|\nabla f(x)|^{p}\,dx\Bigr)^{\frac{1}{p}}
 
\Bigl(\int\limits_{B}|f(x)-f_B|^{p^*}\,dx\Bigr)^{\frac{1}{p^*}} \leqslant C\Bigl(\int\limits_{B}|\nabla f(x)|^{p}\,dx\Bigr)^{\frac{1}{p}}
 
\end{equation}
 
\end{equation}
for any balls $B \subset \mathbb R^n$, and constant $C$ depends only on $n$ and $p$.
+
for any balls $B \subset \mathbb R^n$, and constant $C$ depends only on $n$ and $p$. Here $f_B = \frac{1}{|B|}\int\limits_{B}f\,dx$.  
 
===References===
 
===References===
 
{|
 
{|

Revision as of 03:35, 27 November 2012

Let $f\in W^1_p(\mathbb R^n)$, $1\leqslant p < n$ and $p^* = \frac{np}{n-p}$ then the following inequality holds \begin{equation}\label{eq:1} \Bigl(\int\limits_{B}|f(x)-f_B|^{p^*}\,dx\Bigr)^{\frac{1}{p^*}} \leqslant C\Bigl(\int\limits_{B}|\nabla f(x)|^{p}\,dx\Bigr)^{\frac{1}{p}} \end{equation} for any balls $B \subset \mathbb R^n$, and constant $C$ depends only on $n$ and $p$. Here $f_B = \frac{1}{|B|}\int\limits_{B}f\,dx$.

References

[EG] L.C. Evans, R.F. Gariepy, "Measure theory and fine properties of functions" Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR1158660 Zbl 0804.2800
[JH] J. Heinonen, "Lectures on Analysis on Metric Spaces" Springer, New York, NY, 2001.
How to Cite This Entry:
Poincaré inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poincar%C3%A9_inequality&oldid=28912