Difference between revisions of "User talk:Nikita2"
From Encyclopedia of Mathematics
(→One of conjectures of De Giorgi: new section) |
|||
Line 9: | Line 9: | ||
< \infty. | < \infty. | ||
\end{equation} | \end{equation} | ||
+ | |||
+ | == One of conjectures of De Giorgi == | ||
+ | |||
+ | If $\exp(tw), \exp(tw^{-1}) \in L^1_{\operatorname{loc}}$ for each $t > 0$ then w is regular weight. |
Revision as of 17:19, 23 November 2012
Weighted Sobolev Spaces
Let $D\subset \mathbb R^n$ be open and let $w:\mathbb R^n\rightarrow[0,\infty)$ be a locally summable nonnegative function "weight". For $1\leqslant p<\infty$ and $l\in\mathbb N$ we can define weighted Sobolev space $W^l_p(D,w)$ as the set of locally summable functions $f:D\to\mathbb R$ such that for every multi-index $\alpha$ there exists weak derivative $D^{\alpha}f$ and
\begin{equation} \|f\mid W^l_p(D, w)\| = \Biggl(\,\sum\limits_{|\alpha|\leqslant l}\ \int\limits_{D}|D^{\alpha}f|^p(x)w(x)\, dx \,\Biggr)^{\frac{1}{p}} < \infty. \end{equation}
One of conjectures of De Giorgi
If $\exp(tw), \exp(tw^{-1}) \in L^1_{\operatorname{loc}}$ for each $t > 0$ then w is regular weight.
How to Cite This Entry:
Nikita2. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nikita2&oldid=28861
Nikita2. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nikita2&oldid=28861