Namespaces
Variants
Actions

Difference between revisions of "User:Matteo.focardi/sandbox"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 1: Line 1:
 +
 +
  
  
Line 15: Line 17:
 
and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of the sum of the products of all possible higher order minors  
 
and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of the sum of the products of all possible higher order minors  
 
of $A$ with corresponding minors of the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$  
 
of $A$ with corresponding minors of the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$  
denotes any [[Multiindex|multi-index]] $(k_1,\ldots,k_m)$ with $1\leq k_1<\ldots<k_m\leq n$ of length $m$, then
+
denotes any [[Multiindex|multi-index]] $(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$ of length $m$, then
 
\[
 
\[
 
\det(AB)=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\alpha},
 
\det(AB)=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\alpha},
Line 27: Line 29:
 
\]
 
\]
 
A number of interesting consequence of Cauchy-Binet formula is listed below.
 
A number of interesting consequence of Cauchy-Binet formula is listed below.
First of all, an inequality for the [[Rank|rank]] of the product matrix $C$
+
First of all, an inequality for the [[Rank|rank]] of the product matrix  
follows straightforwardly , i.e.,
+
follows straightforwardly, i.e.,
 
\[
 
\[
\mathrm{rank}C\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}.
+
\mathrm{rank}(AB)\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}.
 
\]
 
\]
 
Moreover, if $m=2$, $\mathbf{a}$, $\mathbf{b}\in\mathbb{R}^n$ are two vectors,  
 
Moreover, if $m=2$, $\mathbf{a}$, $\mathbf{b}\in\mathbb{R}^n$ are two vectors,  
Line 58: Line 60:
 
in turn implying Cauchy-Schwartz inequality.
 
in turn implying Cauchy-Schwartz inequality.
  
If $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,q}(\mathbb{R})$,
+
If $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,q}(\mathbb{R})$, in principle
and $N\leq\min\{m,q\}$ then any minor of order $N$ of the product matrix $C=AB$
+
$m\neq q$, and $N\leq\min\{m,q\}$ then any minor of order $N$ of the product matrix $AB$
 +
can be expressed as follows by Cauchy-Binet formula
 +
\[
 +
C_{\alpha,\,\gamma}=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta,\,\gamma}
 +
\]
 +
where $\alpha=(\alpha_1\ldots,\alpha_N)$, $1\leq\alpha_1<\ldots<\alpha_N\leq m$,
 +
$\gamma=(\gamma_1,\ldots,\gamma_N)$, $1\leq\gamma_1<\ldots<\gamma_N\leq q$, and
 +
$(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$.

Revision as of 14:44, 23 November 2012

2020 Mathematics Subject Classification: Primary: 15Axx [MSN][ZBL]


A formula aimed at expressing the determinant of the product of two matrices $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,m}(\mathbb{R})$, in terms of the sum of the products of all possible higher order minors of $A$ with corresponding minors of the same order of $B$. More precisely, if $\alpha=(1,\ldots,m)$ and $\beta$ denotes any multi-index $(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$ of length $m$, then \[ \det(AB)=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta\,\alpha}, \] where $A_{\alpha\,\beta}=(a_{\alpha_i\beta_j})$ and $B_{\beta\,\alpha}=(a_{\beta_j\alpha_i})$. In case $m>n$, no such $\beta$ exists and the right-hand side above is set to be $0$ by definition.

If $n=m$ the formula reduces to \[ \det (AB)=\det A\,\det B. \] A number of interesting consequence of Cauchy-Binet formula is listed below. First of all, an inequality for the rank of the product matrix follows straightforwardly, i.e., \[ \mathrm{rank}(AB)\leq\min\{\mathrm{rank}A,\mathrm{rank}B\}. \] Moreover, if $m=2$, $\mathbf{a}$, $\mathbf{b}\in\mathbb{R}^n$ are two vectors, by taking $$A=\begin{pmatrix} a_{1}&\dots&a_{n}\\ b_{1}&\dots&b_{n}\\ \end{pmatrix} \quad\text{and}\quad B=\begin{pmatrix} a_{1}&b_{1}\\ \dots&\dots\\ a_{n}&b_{n}\\ \end{pmatrix} $$ by Cauchy-Binet \[ \sum_{1\leq i<j\leq n}\begin{pmatrix} a_{i}&a_{j}\\ b_{i}&b_{j}\\ \end{pmatrix}^2= \begin{pmatrix} \|\mathbf{a}\|^2&\mathbf{a}\cdot \mathbf{b}\\ \mathbf{a}\cdot \mathbf{b}&\|\mathbf{b}\|^2,\\ \end{pmatrix} \] in turn implying Cauchy-Schwartz inequality.

If $A\in\mathrm{M}_{m,n}(\mathbb{R})$ and $B\in\mathrm{M}_{n,q}(\mathbb{R})$, in principle $m\neq q$, and $N\leq\min\{m,q\}$ then any minor of order $N$ of the product matrix $AB$ can be expressed as follows by Cauchy-Binet formula \[ C_{\alpha,\,\gamma}=\sum_\beta\det A_{\alpha\,\beta}\det B_{\beta,\,\gamma} \] where $\alpha=(\alpha_1\ldots,\alpha_N)$, $1\leq\alpha_1<\ldots<\alpha_N\leq m$, $\gamma=(\gamma_1,\ldots,\gamma_N)$, $1\leq\gamma_1<\ldots<\gamma_N\leq q$, and $(\beta_1,\ldots,\beta_m)$ with $1\leq \beta_1<\ldots<\beta_m\leq n$.

How to Cite This Entry:
Matteo.focardi/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matteo.focardi/sandbox&oldid=28828