Namespaces
Variants
Actions

Difference between revisions of "Nowhere-dense set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
Line 1: Line 1:
''of a topological space''
+
{{MSC|54A05|54C05}}
 +
[[Category:Topology]]
 +
{{TEX|done}}
  
A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067810/n0678101.png" /> defined by the following property: Every non-empty open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067810/n0678102.png" /> contains a non-empty open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067810/n0678103.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067810/n0678104.png" />. In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067810/n0678105.png" /> is nowhere dense if it is not dense in any non-empty open set.
+
A subset $A$ of topological space $X$ is nowhere dense if, for every nonempty open $U\subset X$, the intersection $U\cap A$ is ''not'' dense in $U$. Common equivalent definitions are:
 +
* For every nonempty open set $U\subset X$, the interior of $U\setminus A$ is not empty.
 +
* The closure of $A$ has empty interior.
 +
* The complement of the closure of $A$ is dense.
  
 +
In a product $X = \prod_\alpha X_\alpha$ of topological spaces, if infinitely many factors are non compact, then any compact subset of $X$ is nowhere dense.
  
 
+
The [[Baire theorem|Baire Category theorem]] asserts that if $X$ is a complete metric space or a locally compact Hausdorff space, then the complement of a countable union of nowhere dense sets is always nonempty.
====Comments====
 
Another characterization is: The interior of the closure of a nowhere-dense set is empty. If in a topological product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067810/n0678106.png" /> infinitely many of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067810/n0678107.png" /> are non-compact, then each compact subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067810/n0678108.png" /> is nowhere dense. A boundary set is the complement of a dense set, i.e. it satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067810/n0678109.png" />. A set whose closure is a boundary set is nowhere dense. A non-empty complete metric space is of the second category, i.e. in it a countable union of nowhere-dense sets is nowhere dense (the Baire category theorem, cf. [[Baire theorem|Baire theorem]]).
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.V. Arkhangel'skii,  V.I. Ponomarev,  "Fundamentals of general topology: problems and exercises" , Reidel  (1984) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.L. Kelley,  "General topology" , v. Nostrand  (1955) pp. 145</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|AP}}|| A.V. Arkhangel'skii,  V.I. Ponomarev,  "Fundamentals of general topology: problems and exercises" , Reidel  (1984)
 +
|-
 +
|valign="top"|{{Ref|Ox}}|| J.C. Oxtoby,  "Measure and category" , Springer  (1971) {{MR|0393403}} {{ZBL| 0217.09201}}
 +
|-
 +
|valign="top"|{{Ref|Ke}}|| J.L. Kelley,  "General topology" , v. Nostrand  (1955) {{MR|0070144}} {{ZBL|0066.1660}}
 +
|-
 +
|}

Revision as of 17:12, 22 September 2012

2020 Mathematics Subject Classification: Primary: 54A05 Secondary: 54C05 [MSN][ZBL]

A subset $A$ of topological space $X$ is nowhere dense if, for every nonempty open $U\subset X$, the intersection $U\cap A$ is not dense in $U$. Common equivalent definitions are:

  • For every nonempty open set $U\subset X$, the interior of $U\setminus A$ is not empty.
  • The closure of $A$ has empty interior.
  • The complement of the closure of $A$ is dense.

In a product $X = \prod_\alpha X_\alpha$ of topological spaces, if infinitely many factors are non compact, then any compact subset of $X$ is nowhere dense.

The Baire Category theorem asserts that if $X$ is a complete metric space or a locally compact Hausdorff space, then the complement of a countable union of nowhere dense sets is always nonempty.

References

[AP] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984)
[Ox] J.C. Oxtoby, "Measure and category" , Springer (1971) MR0393403 0217.09201 Zbl 0217.09201
[Ke] J.L. Kelley, "General topology" , v. Nostrand (1955) MR0070144 Zbl 0066.1660
How to Cite This Entry:
Nowhere-dense set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nowhere-dense_set&oldid=28105
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article