Difference between revisions of "Iversen theorem"
(Importing text file) |
(TeX, Refs, MSC (please check MSC)) |
||
Line 1: | Line 1: | ||
− | + | {{MSC|32H25}} | |
+ | {{TEX|done}} | ||
− | + | If $a$ is an isolated essential singularity of an analytic function $f(z)$ of a complex variable $z$, then every [[Exceptional value|exceptional value]] $\alpha$ in the sense of E. Picard is an [[Asymptotic value|asymptotic value]] of $f(z)$ at $a$. For example, the values $\alpha_1=0$ and $\alpha_2=\infty$ are exceptional and asymptotic values of $f(z) = \mathrm{e}^z$ at the essential singularity $a=\infty$. This result of F. Iversen {{Cite|Iv}} supplements the big [[Picard theorem]] on the behaviour of an analytic function in a neighbourhood of an essential singularity. | |
− | |||
+ | Iversen's theorem has been extended to subharmonic functions on $\R^n$, notably by W.K. Hayman, see {{Cite|HaKe}}, {{Cite|Ha}}. | ||
− | + | ====References==== | |
− | ==== | + | {| |
− | + | |- | |
− | + | |valign="top"|{{Ref|CoLo}}||valign="top"| E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets", Cambridge Univ. Press (1966) pp. Chapt. 1;6 | |
− | + | |- | |
− | + | |valign="top"|{{Ref|Ha}}||valign="top"| W.K. Hayman, "Subharmonic functions", '''2''', Acad. Press (1989) | |
+ | |- | ||
+ | |valign="top"|{{Ref|HaKe}}||valign="top"| W.K. Hayman, P.B. Kennedy, "Subharmonic functions", '''1''', Acad. Press (1976) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Iv}}||valign="top"| F. Iversen, "Récherches sur les fonctions inverses des fonctions méromorphes", Helsinki (1914) | ||
+ | |- | ||
+ | |} |
Latest revision as of 21:07, 31 July 2012
2020 Mathematics Subject Classification: Primary: 32H25 [MSN][ZBL]
If $a$ is an isolated essential singularity of an analytic function $f(z)$ of a complex variable $z$, then every exceptional value $\alpha$ in the sense of E. Picard is an asymptotic value of $f(z)$ at $a$. For example, the values $\alpha_1=0$ and $\alpha_2=\infty$ are exceptional and asymptotic values of $f(z) = \mathrm{e}^z$ at the essential singularity $a=\infty$. This result of F. Iversen [Iv] supplements the big Picard theorem on the behaviour of an analytic function in a neighbourhood of an essential singularity.
Iversen's theorem has been extended to subharmonic functions on $\R^n$, notably by W.K. Hayman, see [HaKe], [Ha].
References
[CoLo] | E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets", Cambridge Univ. Press (1966) pp. Chapt. 1;6 |
[Ha] | W.K. Hayman, "Subharmonic functions", 2, Acad. Press (1989) |
[HaKe] | W.K. Hayman, P.B. Kennedy, "Subharmonic functions", 1, Acad. Press (1976) |
[Iv] | F. Iversen, "Récherches sur les fonctions inverses des fonctions méromorphes", Helsinki (1914) |
Iversen theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Iversen_theorem&oldid=27313