Difference between revisions of "Stochastic matrix"
(MSC|15B51|60J10 Category:Special matrices Category:Markov chains) |
(refs format) |
||
Line 24: | Line 24: | ||
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015027.png" /> is the matrix all rows of which coincide with the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015028.png" /> (see also [[Markov chain, ergodic|Markov chain, ergodic]]; for infinite stochastic matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015029.png" />, the system of equations (1) may have no non-zero non-negative solutions that satisfy the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015030.png" />; in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015031.png" /> is the zero matrix). The rate of convergence in (2) can be estimated by a geometric progression with any exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015032.png" /> that has absolute value greater than the absolute values of all the eigenvalues of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015033.png" /> other than 1. | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015027.png" /> is the matrix all rows of which coincide with the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015028.png" /> (see also [[Markov chain, ergodic|Markov chain, ergodic]]; for infinite stochastic matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015029.png" />, the system of equations (1) may have no non-zero non-negative solutions that satisfy the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015030.png" />; in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015031.png" /> is the zero matrix). The rate of convergence in (2) can be estimated by a geometric progression with any exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015032.png" /> that has absolute value greater than the absolute values of all the eigenvalues of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015033.png" /> other than 1. | ||
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015034.png" /> is a stochastic matrix of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015035.png" />, then any of its eigenvalues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015036.png" /> satisfies the inequality (see | + | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015034.png" /> is a stochastic matrix of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015035.png" />, then any of its eigenvalues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015036.png" /> satisfies the inequality (see {{Cite|MM}}): |
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015037.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015037.png" /></td> </tr></table> | ||
− | The union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015038.png" /> of the sets of eigenvalues of all stochastic matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015039.png" /> has been described (see | + | The union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015038.png" /> of the sets of eigenvalues of all stochastic matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015039.png" /> has been described (see {{Cite|Ka}}). |
A stochastic matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015040.png" /> that satisfies the extra condition | A stochastic matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015040.png" /> that satisfies the extra condition | ||
Line 37: | Line 37: | ||
====References==== | ====References==== | ||
− | + | {| | |
− | + | |valign="top"|{{Ref|G}}|| F.R. Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1977) (Translated from Russian) {{MR|1657129}} {{MR|0107649}} {{MR|0107648}} {{ZBL|0927.15002}} {{ZBL|0927.15001}} {{ZBL|0085.01001}} | |
− | + | |- | |
+ | |valign="top"|{{Ref|B}}|| R. Bellman, "Introduction to matrix analysis" , McGraw-Hill (1960) {{MR|0122820}} {{ZBL|0124.01001}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|MM}}|| M. Marcus, H. Minc, "A survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964) {{MR|0162808}} {{ZBL|0126.02404}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ka}}|| F.I. Karpelevich, "On the characteristic roots of matrices with non-negative entries" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''15''' (1951) pp. 361–383 (In Russian) | ||
+ | |} | ||
====Comments==== | ====Comments==== | ||
− | Given a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015047.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015048.png" /> with non-negative entries, the question arises whether there are invertible positive diagonal matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015050.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015051.png" /> is a doubly-stochastic matrix, and to what extent the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015053.png" /> are unique. Such theorems are known as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015055.png" />-theorems. They are of interest in telecommunications and statistics, | + | Given a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015047.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015048.png" /> with non-negative entries, the question arises whether there are invertible positive diagonal matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015050.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015051.png" /> is a doubly-stochastic matrix, and to what extent the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015053.png" /> are unique. Such theorems are known as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015055.png" />-theorems. They are of interest in telecommunications and statistics, {{Cite|F}}–{{Cite|C}}. |
A matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015056.png" /> is fully decomposable if there do not exist permutation matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015058.png" /> such that | A matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015056.png" /> is fully decomposable if there do not exist permutation matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015057.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015058.png" /> such that | ||
Line 50: | Line 56: | ||
A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015060.png" />-matrix is fully indecomposable if it is non-zero. | A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015060.png" />-matrix is fully indecomposable if it is non-zero. | ||
− | Then for a non-negative square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015061.png" /> there exist positive diagonal matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015063.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015064.png" /> is doubly stochastic if and only if there exist permutation matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015066.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015067.png" /> is a direct sum of fully indecomposable matrices | + | Then for a non-negative square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015061.png" /> there exist positive diagonal matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015062.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015063.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015064.png" /> is doubly stochastic if and only if there exist permutation matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015066.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015067.png" /> is a direct sum of fully indecomposable matrices {{Cite|SK}}, {{Cite|BPS}}. |
====References==== | ====References==== | ||
− | + | {| | |
+ | |valign="top"|{{Ref|SK}}|| R. Sinkhorn, P. Knopp, "Concerning nonnegative matrices and doubly stochastic matrices" ''Pacific J. Math.'' , '''21''' (1967) pp. 343–348 {{MR|0210731}} {{ZBL|0152.01403}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|BPS}}|| R.A. Brualdi, S.V. Parter, H. Schneider, "The diagonal equivalence of a nonnegative matrix to a stochastic matrix" ''J. Math. Anal. Appl.'' , '''16''' (1966) pp. 31–50 {{MR|0206019}} {{ZBL|0231.15017}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|F}}|| S. Fienberg, "An iterative procedure for estimation in contingency tables" ''Ann. Math. Stat.'' , '''41''' (1970) pp. 907–917 {{MR|0266394}} {{ZBL|0198.23401}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Kr}}|| R.S. Krupp, "Properties of Kruithof's projection method" ''Bell Systems Techn. J.'' , '''58''' (1979) pp. 517–538 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|C}}|| I. Csiszár, "I-divergence geometry of probability distributions and minimization problems" ''Ann. Probab.'' , '''3''' (1975) pp. 146–158 {{MR|0365798}} {{ZBL|0318.60013}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Nu}}|| R.D. Nussbaum, "Iterated nonlinear maps and Hilbert's projective method II" ''Memoirs Amer. Math. Soc.'' , '''401''' (1989) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ne}}|| M.F. Neuts, "Structured stochastic matrices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090150/s09015068.png" /> type and their applications" , M. Dekker (1989) {{MR|1010040}} {{ZBL|0695.60088}} | ||
+ | |- | ||
+ | |valign="top"|{{Ref|S}}|| E. Seneta, "Non-negative matrices and Markov chains" , Springer (1981) {{MR|2209438}} {{ZBL|0471.60001}} | ||
+ | |} |
Revision as of 18:10, 29 May 2012
2020 Mathematics Subject Classification: Primary: 15B51 Secondary: 60J10 [MSN][ZBL]
A square (possibly infinite) matrix with non-negative elements, for which
The set of all stochastic matrices of order is the convex hull of the set of stochastic matrices consisting of zeros and ones. Any stochastic matrix can be considered as the matrix of transition probabilities of a discrete Markov chain .
The absolute values of the eigenvalues of stochastic matrices do not exceed 1; 1 is an eigenvalue of any stochastic matrix. If a stochastic matrix is indecomposable (the Markov chain has one class of positive states), then 1 is a simple eigenvalue of (i.e. it has multiplicity 1); in general, the multiplicity of the eigenvalue 1 coincides with the number of classes of positive states of the Markov chain . If a stochastic matrix is indecomposable and if the class of positive states of the Markov chain has period , then the set of all eigenvalues of , as a set of points in the complex plane, is mapped onto itself by rotation through an angle . When , the stochastic matrix and the Markov chain are called aperiodic.
The left eigenvectors of of finite order, corresponding to the eigenvalue :
(1) |
and satisfying the conditions , , define the stationary distributions of the Markov chain ; in the case of an indecomposable matrix , the stationary distribution is unique.
If is an indecomposable aperiodic stochastic matrix of finite order, then the following limit exists:
(2) |
where is the matrix all rows of which coincide with the vector (see also Markov chain, ergodic; for infinite stochastic matrices , the system of equations (1) may have no non-zero non-negative solutions that satisfy the condition ; in this case is the zero matrix). The rate of convergence in (2) can be estimated by a geometric progression with any exponent that has absolute value greater than the absolute values of all the eigenvalues of other than 1.
If is a stochastic matrix of order , then any of its eigenvalues satisfies the inequality (see [MM]):
The union of the sets of eigenvalues of all stochastic matrices of order has been described (see [Ka]).
A stochastic matrix that satisfies the extra condition
is called a doubly-stochastic matrix. The set of doubly-stochastic matrices of order is the convex hull of the set of permutation matrices of order (i.e. doubly-stochastic matrices consisting of zeros and ones). A finite Markov chain with a doubly-stochastic matrix has the uniform stationary distribution.
References
[G] | F.R. Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1977) (Translated from Russian) MR1657129 MR0107649 MR0107648 Zbl 0927.15002 Zbl 0927.15001 Zbl 0085.01001 |
[B] | R. Bellman, "Introduction to matrix analysis" , McGraw-Hill (1960) MR0122820 Zbl 0124.01001 |
[MM] | M. Marcus, H. Minc, "A survey of matrix theory and matrix inequalities" , Allyn & Bacon (1964) MR0162808 Zbl 0126.02404 |
[Ka] | F.I. Karpelevich, "On the characteristic roots of matrices with non-negative entries" Izv. Akad. Nauk SSSR Ser. Mat. , 15 (1951) pp. 361–383 (In Russian) |
Comments
Given a real -matrix with non-negative entries, the question arises whether there are invertible positive diagonal matrices and such that is a doubly-stochastic matrix, and to what extent the and are unique. Such theorems are known as -theorems. They are of interest in telecommunications and statistics, [F]–[C].
A matrix is fully decomposable if there do not exist permutation matrices and such that
A -matrix is fully indecomposable if it is non-zero.
Then for a non-negative square matrix there exist positive diagonal matrices and such that is doubly stochastic if and only if there exist permutation matrices and such that is a direct sum of fully indecomposable matrices [SK], [BPS].
References
[SK] | R. Sinkhorn, P. Knopp, "Concerning nonnegative matrices and doubly stochastic matrices" Pacific J. Math. , 21 (1967) pp. 343–348 MR0210731 Zbl 0152.01403 |
[BPS] | R.A. Brualdi, S.V. Parter, H. Schneider, "The diagonal equivalence of a nonnegative matrix to a stochastic matrix" J. Math. Anal. Appl. , 16 (1966) pp. 31–50 MR0206019 Zbl 0231.15017 |
[F] | S. Fienberg, "An iterative procedure for estimation in contingency tables" Ann. Math. Stat. , 41 (1970) pp. 907–917 MR0266394 Zbl 0198.23401 |
[Kr] | R.S. Krupp, "Properties of Kruithof's projection method" Bell Systems Techn. J. , 58 (1979) pp. 517–538 |
[C] | I. Csiszár, "I-divergence geometry of probability distributions and minimization problems" Ann. Probab. , 3 (1975) pp. 146–158 MR0365798 Zbl 0318.60013 |
[Nu] | R.D. Nussbaum, "Iterated nonlinear maps and Hilbert's projective method II" Memoirs Amer. Math. Soc. , 401 (1989) |
[Ne] | M.F. Neuts, "Structured stochastic matrices of type and their applications" , M. Dekker (1989) MR1010040 Zbl 0695.60088 |
[S] | E. Seneta, "Non-negative matrices and Markov chains" , Springer (1981) MR2209438 Zbl 0471.60001 |
Stochastic matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_matrix&oldid=26953