Difference between revisions of "Parallel transport"
m (Blanked the page) |
m |
||
Line 1: | Line 1: | ||
+ | A topological or differential geometric construction generalizing the idea of parallel translation in affine spaces to general bundles. In contrast with the affine case, the result of parallel transport along a closed path may in general be nontrivial, leading thus to the notion of [[curvature]]. | ||
+ | ==Parallel transport (translation) in affine spaces== | ||
+ | If $A$ is an affine space associated with the vector space $V=\Bbbk^n$ (over the field $\Bbbk$, usually $\Bbbk=\R$), then $V$ acts on $A$ by parallel translations $\{t_w:w\in V\}$: | ||
+ | $$ | ||
+ | \forall x=(a_1,\dots,a_n)\in A^n,\ \forall w=(w_1,\dots,w_n)\in V\qquad t_w x=(a_1+w_1,\dots,a_n+ w_n). | ||
+ | $$ | ||
+ | This action induces the (almost trivial) action of parallel transport on tangent vectors. If $TA\simeq V\times A\simeq\Bbbk^{2n}=\{(v,a)\}$ is the tangent bundle, the collection of vectors $v$ attached to different points $a\in A$, then the parallel transport acts on $TA$ by its [[differential]], | ||
+ | $$ | ||
+ | \forall v\in T_aA,\ \forall w\in V,\qquad \rd t_w(a)\cdot v=v\in T_{t_w(a)}=T_{a+w} A. | ||
+ | $$ | ||
+ | Consequently, if $w_1,\dots,w_k\in V$ are vectors such that $w=w_1+\cdots+w_k=0$, then the action $t_{w_k}\circ\cdots\circ t_{w_1}:T_a A\to T_a A$ is the identity for any point $a$. | ||
+ | |||
+ | These trivial observations indicate some of the properties that will fail for general parallel transport. | ||
+ | |||
+ | ==Parallel transport in bundles: informal definition== |
Revision as of 07:22, 10 May 2012
A topological or differential geometric construction generalizing the idea of parallel translation in affine spaces to general bundles. In contrast with the affine case, the result of parallel transport along a closed path may in general be nontrivial, leading thus to the notion of curvature.
Parallel transport (translation) in affine spaces
If $A$ is an affine space associated with the vector space $V=\Bbbk^n$ (over the field $\Bbbk$, usually $\Bbbk=\R$), then $V$ acts on $A$ by parallel translations $\{t_w:w\in V\}$: $$ \forall x=(a_1,\dots,a_n)\in A^n,\ \forall w=(w_1,\dots,w_n)\in V\qquad t_w x=(a_1+w_1,\dots,a_n+ w_n). $$ This action induces the (almost trivial) action of parallel transport on tangent vectors. If $TA\simeq V\times A\simeq\Bbbk^{2n}=\{(v,a)\}$ is the tangent bundle, the collection of vectors $v$ attached to different points $a\in A$, then the parallel transport acts on $TA$ by its differential, $$ \forall v\in T_aA,\ \forall w\in V,\qquad \rd t_w(a)\cdot v=v\in T_{t_w(a)}=T_{a+w} A. $$ Consequently, if $w_1,\dots,w_k\in V$ are vectors such that $w=w_1+\cdots+w_k=0$, then the action $t_{w_k}\circ\cdots\circ t_{w_1}:T_a A\to T_a A$ is the identity for any point $a$.
These trivial observations indicate some of the properties that will fail for general parallel transport.
Parallel transport in bundles: informal definition
Parallel transport. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parallel_transport&oldid=26312