|
|
Line 1: |
Line 1: |
− | One of the methods for summing series and sequences using an infinite matrix. Employing an infinite matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m0628601.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m0628602.png" /> a given sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m0628603.png" /> is transformed into the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m0628604.png" />:
| + | {{MSC|40C05}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m0628605.png" /></td> </tr></table>
| + | A matrix summation method is one of the methods for summing series and sequences using an infinite matrix. Employing an infinite matrix $[a_{nk}]$, $n,k=1,2,\ldots,$ a given sequence $(s_n)$ is transformed into the sequence $\sigma_n$: |
| + | $$ |
| + | \sigma_n = \sum_{k=1}^\infty a_{nk}s_k. |
| + | $$ |
| + | If the series on the right-hand side converges for all $n=1,2,\ldots,$ and if the sequence $\sigma_n$ has a limit $s$ for $n \rightarrow \infty$: |
| + | $$ |
| + | \lim_{n\rightarrow\infty} \sigma_n = s, |
| + | $$ |
| + | then the sequence $(s_n)$ is said to be summable by the method determined by the matrix $[a_{nk}]$, or simply summable by the matrix $[a_{nk}]$, and the number $s$ is referred to as its limit in the sense of this summation method. If $(s_n)$ is regarded as the sequence of partial sums of a series |
| + | \begin{equation} |
| + | \label{eq1} |
| + | \sum_{k=1}^\infty u_k, |
| + | \end{equation} |
| + | then this series is said to be summable to the sum $s$ by the matrix |
| + | $[a_{nk}]$. |
| | | |
− | If the series on the right-hand side converges for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m0628606.png" /> and if the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m0628607.png" /> has a limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m0628608.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m0628609.png" />:
| + | A matrix summation method for series can be also defined directly by transforming the series \ref{eq1} into a sequence $(\gamma_n)$: |
− | | + | \begin{equation} |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286010.png" /></td> </tr></table>
| + | \label{eq2} |
− | | + | \gamma_n = \sum_{k=1}^\infty g_{nk}u_k, |
− | then the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286011.png" /> is said to be summable by the method determined by the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286012.png" />, or simply summable by the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286013.png" />, and the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286014.png" /> is referred to as its limit in the sense of this summation method. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286015.png" /> is regarded as the sequence of partial sums of a series
| + | \end{equation} |
− | | + | where $[g_{nk}]$ is a given matrix. In this case the series \ref{eq1} is said to be summable to the sum $s$ if, for all $n=1,2,\ldots,$ the series on the right-hand side in \ref{eq2} converges and |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | $$ |
− | | + | \lim_{n\rightarrow\infty} \gamma_n = s, |
− | then this series is said to be summable to the sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286017.png" /> by the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286018.png" />.
| + | $$ |
− | | |
− | A matrix summation method for series can be also defined directly by transforming the series (1) into a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286019.png" />: | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286020.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286021.png" /> is a given matrix. In this case the series (1) is said to be summable to the sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286022.png" /> if, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286023.png" /> the series on the right-hand side in (2) converges and | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286024.png" /></td> </tr></table>
| |
− | | |
− | Less often used are matrix summation methods defined by a transformation of a series (1) into a series
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286025.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| |
| | | |
| + | Less often used are matrix summation methods defined by a transformation of a series \ref{eq1} into a series |
| + | \begin{equation} |
| + | \label{eq3} |
| + | \sum_{n=1}^\infty \alpha_n, |
| + | \end{equation} |
| where | | where |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286026.png" /></td> </tr></table>
| + | \alpha_n = \sum_{k=1}^\infty \alpha_{nk}u_k, |
− | | + | $$ |
− | or by a transformation of a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286027.png" /> into a series | + | or by a transformation of a sequence $(s_n)$ into a series |
− | | + | \begin{equation} |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286028.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
| + | \label{eq4} |
− | | + | \sum_{n=1}^\infty \beta_n, |
| + | \end{equation} |
| where | | where |
| + | $$ |
| + | \beta_n = \sum_{k=1}^\infty \beta_{nk}s_k, \quad n=1,2,\ldots, |
| + | $$ |
| + | which use matrices $[\alpha_{nk}]$ and $[\beta_{nk}]$, respectively. In these cases the series \ref{eq1} with the partial sums $s_n$ is summable to the sum $s$ if the series \ref{eq3} converges to $s$ or, respectively, if the series \ref{eq4} converges to $s$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286029.png" /></td> </tr></table>
| + | The matrix of a summation method all entries of which are non-negative is called a positive matrix. Among the matrix summation methods one finds, for example, the [[Voronoi summation method]], the [[Cesàro summation methods]], the [[Euler summation method]], the [[Riesz summation method]] $(R,p_n)$, the [[Hausdorff summation method]], and others (see also [[Summation methods]]). |
− | | |
− | which use matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286031.png" />, respectively. In these cases the series (1) with the partial sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286032.png" /> is summable to the sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286033.png" /> if the series (3) converges to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286034.png" /> or, respectively, if the series (4) converges to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286035.png" />.
| |
| | | |
− | The matrix of a summation method all entries of which are non-negative is called a positive matrix. Among the matrix summation methods one finds, for example, the [[Voronoi summation method|Voronoi summation method]], the [[Cesàro summation methods|Cesàro summation methods]], the [[Euler summation method|Euler summation method]], the [[Riesz summation method|Riesz summation method]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062860/m06286036.png" />, the [[Hausdorff summation method|Hausdorff summation method]], and others (see also [[Summation methods|Summation methods]]).
| + | ====References==== |
| | | |
− | ====References====
| + | {| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.H. Hardy, "Divergent series" , Clarendon Press (1949)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.G. Cooke, "Infinite matrices and sequence spaces" , Macmillan (1950)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.P. Kangro, "Theory of summability of sequences and series" ''J. Soviet Math.'' , '''5''' : 1 (1976) pp. 1–45 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''12''' (1974) pp. 5–70</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.A. Baron, "Introduction to the theory of summability of series" , Tartu (1966) (In Russian)</TD></TR></table>
| + | |- |
| + | |valign="top"|{{Ref|Ba}}||valign="top"| S.A. Baron, "Introduction to the theory of summability of series", Tartu (1966) (In Russian) |
| + | |- |
| + | |valign="top"|{{Ref|Co}}||valign="top"| R.G. Cooke, "Infinite matrices and sequence spaces", Macmillan (1950) |
| + | |- |
| + | |valign="top"|{{Ref|Ha}}||valign="top"| G.H. Hardy, "Divergent series", Clarendon Press (1949) |
| + | |- |
| + | |valign="top"|{{Ref|Ka}}||valign="top"| G.P. Kangro, "Theory of summability of sequences and series" ''J. Soviet Math.'', '''5''' : 1 (1976) pp. 1–45 ''Itogi Nauk. i Tekhn. Mat. Anal.'', '''12''' (1974) pp. 5–70 |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 40C05 [MSN][ZBL]
A matrix summation method is one of the methods for summing series and sequences using an infinite matrix. Employing an infinite matrix $[a_{nk}]$, $n,k=1,2,\ldots,$ a given sequence $(s_n)$ is transformed into the sequence $\sigma_n$:
$$
\sigma_n = \sum_{k=1}^\infty a_{nk}s_k.
$$
If the series on the right-hand side converges for all $n=1,2,\ldots,$ and if the sequence $\sigma_n$ has a limit $s$ for $n \rightarrow \infty$:
$$
\lim_{n\rightarrow\infty} \sigma_n = s,
$$
then the sequence $(s_n)$ is said to be summable by the method determined by the matrix $[a_{nk}]$, or simply summable by the matrix $[a_{nk}]$, and the number $s$ is referred to as its limit in the sense of this summation method. If $(s_n)$ is regarded as the sequence of partial sums of a series
\begin{equation}
\label{eq1}
\sum_{k=1}^\infty u_k,
\end{equation}
then this series is said to be summable to the sum $s$ by the matrix
$[a_{nk}]$.
A matrix summation method for series can be also defined directly by transforming the series \ref{eq1} into a sequence $(\gamma_n)$:
\begin{equation}
\label{eq2}
\gamma_n = \sum_{k=1}^\infty g_{nk}u_k,
\end{equation}
where $[g_{nk}]$ is a given matrix. In this case the series \ref{eq1} is said to be summable to the sum $s$ if, for all $n=1,2,\ldots,$ the series on the right-hand side in \ref{eq2} converges and
$$
\lim_{n\rightarrow\infty} \gamma_n = s,
$$
Less often used are matrix summation methods defined by a transformation of a series \ref{eq1} into a series
\begin{equation}
\label{eq3}
\sum_{n=1}^\infty \alpha_n,
\end{equation}
where
$$
\alpha_n = \sum_{k=1}^\infty \alpha_{nk}u_k,
$$
or by a transformation of a sequence $(s_n)$ into a series
\begin{equation}
\label{eq4}
\sum_{n=1}^\infty \beta_n,
\end{equation}
where
$$
\beta_n = \sum_{k=1}^\infty \beta_{nk}s_k, \quad n=1,2,\ldots,
$$
which use matrices $[\alpha_{nk}]$ and $[\beta_{nk}]$, respectively. In these cases the series \ref{eq1} with the partial sums $s_n$ is summable to the sum $s$ if the series \ref{eq3} converges to $s$ or, respectively, if the series \ref{eq4} converges to $s$.
The matrix of a summation method all entries of which are non-negative is called a positive matrix. Among the matrix summation methods one finds, for example, the Voronoi summation method, the Cesàro summation methods, the Euler summation method, the Riesz summation method $(R,p_n)$, the Hausdorff summation method, and others (see also Summation methods).
References
[Ba] |
S.A. Baron, "Introduction to the theory of summability of series", Tartu (1966) (In Russian)
|
[Co] |
R.G. Cooke, "Infinite matrices and sequence spaces", Macmillan (1950)
|
[Ha] |
G.H. Hardy, "Divergent series", Clarendon Press (1949)
|
[Ka] |
G.P. Kangro, "Theory of summability of sequences and series" J. Soviet Math., 5 : 1 (1976) pp. 1–45 Itogi Nauk. i Tekhn. Mat. Anal., 12 (1974) pp. 5–70
|