Difference between revisions of "Talk:Gamma-function"
(copied to discussion for TeXing) |
(De-imaged) |
||
Line 1: | Line 1: | ||
− | '' | + | ''$ $-function'' |
− | |||
− | + | A transcendental function $ $ that extends the values of the factorial $ $ to any complex number $ $. It was introduced in 1729 by L. Euler in a letter to Ch. Goldbach, using the infinite product | |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> | |
− | + | which was used by L. Euler to obtain the integral representation (Euler integral of the second kind, cf. [[Euler integrals|Euler integrals]]) | |
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> | |
− | + | which is valid for $ $. The multi-valuedness of the function $ $ is eliminated by the formula $ $ with a real $ $. The symbol $ $ and the name gamma-function were proposed in 1814 by A.M. Legendre. | |
− | + | If $ $ and $ $, $ $ the gamma-function may be represented by the Cauchy–Saalschütz integral: | |
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> | |
− | + | In the entire plane punctured at the points $ $ the gamma-function satisfies a Hankel integral representation: | |
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> | |
+ | |||
+ | where $ $ and $ $ is the branch of the logarithm for which $ $; the contour $ $ is represented in Fig. a. It is seen from the Hankel representation that $ $ is a [[Meromorphic function|meromorphic function]]. At the points $ $, $ $ it has simple poles with residues $ $. | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310a.gif" /> | ||
Line 28: | Line 29: | ||
==Fundamental relations and properties of the gamma-function.== | ==Fundamental relations and properties of the gamma-function.== | ||
− | |||
1) Euler's functional equation: | 1) Euler's functional equation: | ||
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
or | or | ||
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | + | $ $, $ $ if $ $ is an integer; it is assumed that $ $. | |
2) Euler's completion formula: | 2) Euler's completion formula: | ||
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | In particular, | + | In particular, $ $; |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | if | + | if $ $ is an integer; |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
3) Gauss' multiplication formula: | 3) Gauss' multiplication formula: | ||
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | If | + | If $ $, this is the Legendre duplication formula. |
− | 4) If | + | 4) If $ $ or $ $, then $ $ can be asymptotically expanded into the Stirling series: |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | where | + | where $ $ are the [[Bernoulli numbers|Bernoulli numbers]]. It implies the equality |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
In particular, | In particular, | ||
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
More accurate is Sonin's formula [[#References|[6]]]: | More accurate is Sonin's formula [[#References|[6]]]: | ||
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | 5) In the | + | 5) In the real domain, $ $ for $ $ and it assumes the sign $ $ on the segments $ $, $ $ (Fig. b). |
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310b.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310b.gif" /> | ||
Line 84: | Line 84: | ||
Figure: g043310b | Figure: g043310b | ||
− | The graph of the function | + | The graph of the function $ $. |
− | For all real | + | For all real $ $ the inequality |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | is valid, | + | is valid, i.e. all branches of both $ $ and $ $ are convex functions. The property of logarithmic convexity defines the gamma-function among all solutions of the functional equation |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
up to a constant factor. | up to a constant factor. | ||
− | For | + | For positive values of $ $ the gamma-function has a unique minimum at $ $ equal to $ $. The local minima of the function $ $ form a sequence tending to zero as $ $. |
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310c.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310c.gif" /> | ||
Line 102: | Line 102: | ||
Figure: g043310c | Figure: g043310c | ||
− | The graph of the function | + | The graph of the function $ $. |
− | 6) | + | 6) In the complex domain, if $ $, the gamma-function rapidly decreases as $ $, |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | 7) The | + | 7) The function $ $ (Fig. c) is an entire function of order one and of maximal type; asymptotically, as $ $, |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
where | where | ||
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
It can be represented by the infinite Weierstrass product: | It can be represented by the infinite Weierstrass product: | ||
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | which | + | which converges absolutely and uniformly on any compact set in the complex plane ($ $ is the [[Euler constant|Euler constant]]). A Hankel integral representation is valid: |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | where the | + | where the contour $ $ is shown in Fig. d. |
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310d.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310d.gif" /> | ||
Line 130: | Line 130: | ||
Figure: g043310d | Figure: g043310d | ||
− | + | $ $ | |
G.F. Voronoi [[#References|[7]]] obtained integral representations for powers of the gamma-function. | G.F. Voronoi [[#References|[7]]] obtained integral representations for powers of the gamma-function. | ||
− | In | + | In applications, the so-called poly gamma-functions — $ $-th derivatives of $ $ — are of importance. The function (Gauss' $ $-function) |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | is | + | is meromorphic, has simple poles at the points $ $ and satisfies the functional equation |
− | <table class="eq" | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | The | + | The representation of $ $ for $ $ yields the formula |
− | <table class="eq" style="width:100%;"> | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
where | where | ||
− | <table | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
+ | |||
+ | This formula may be used to compute $ $ in a neighbourhood of the point $ $. | ||
+ | |||
+ | For other poly gamma-functions see [[#References|[2]]]. The[[Incomplete gamma-function|incomplete gamma-function]] is defined by the equation | ||
+ | |||
+ | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> | ||
− | + | The functions $ $ and $ $ are transcendental functions which do not satisfy any linear differential equation with rational coefficients (Hölder's theorem). | |
− | + | The exceptional importance of the gamma-function in mathematical analysis is due to the fact that it can be used to express a large number of definite integrals, infinite products and sums of series (see, for example, [[Beta-function|Beta-function]]). In addition, it is widely used in the theory of special functions (the[[Hypergeometric function|hypergeometric function]], of which the gamma-function is a limit case, [[Cylinder functions|cylinder functions]], etc.), in analytic number theory, etc. | |
− | + | ====References==== | |
− | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''1. The gamma function. The hypergeometric functions. Legendre functions''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Functions of a real variable" , Addison-Wesley (1976) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> , ''Math. anal., functions, limits, series, continued fractions'' , ''Handbook Math. Libraries'' , Moscow (1961) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N. Nielsen, "Handbuch der Theorie der Gammafunktion" , Chelsea, reprint (1965)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> N.Ya. Sonin, "Studies on cylinder functions and special polynomials" , Moscow (1954) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> G.F. Voronoi, "Studies of primitive parallelotopes" , ''Collected works'' , '''2''' , Kiev (1952) pp. 239–368 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> A. Angot, "Compléments de mathématiques. A l'usage des ingénieurs de l'electrotechnique et des télécommunications" , C.N.E.T. (1957)</TD></TR></table> | |
− | |||
− | |||
− | |||
+ | ====Comments==== | ||
+ | The $ $-analogue of the gamma-function is given by | ||
− | = | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | |||
− | <table class="eq" | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;">$ $</td> </tr></table> |
− | + | cf. [[#References|[a2]]]. Its origin goes back to E. Heine (1847) and D. Jackson (1904). For the gamma-function see also[[#References|[a1]]]. | |
− | + | ====References==== | |
− | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Artin, "The gamma function" , Holt, Rinehart & Winston (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Askey, "The $ $-Gamma and $ $-Beta functions" ''Appl. Anal.'' , '''8''' (1978) pp. 125–141</TD></TR></table> | |
− | <table><TR><TD |
Revision as of 21:37, 26 April 2012
$ $-function
A transcendental function $ $ that extends the values of the factorial $ $ to any complex number $ $. It was introduced in 1729 by L. Euler in a letter to Ch. Goldbach, using the infinite product
$ $ |
$ $ |
which was used by L. Euler to obtain the integral representation (Euler integral of the second kind, cf. Euler integrals)
$ $ |
which is valid for $ $. The multi-valuedness of the function $ $ is eliminated by the formula $ $ with a real $ $. The symbol $ $ and the name gamma-function were proposed in 1814 by A.M. Legendre.
If $ $ and $ $, $ $ the gamma-function may be represented by the Cauchy–Saalschütz integral:
$ $ |
In the entire plane punctured at the points $ $ the gamma-function satisfies a Hankel integral representation:
$ $ |
where $ $ and $ $ is the branch of the logarithm for which $ $; the contour $ $ is represented in Fig. a. It is seen from the Hankel representation that $ $ is a meromorphic function. At the points $ $, $ $ it has simple poles with residues $ $.
Figure: g043310a
Fundamental relations and properties of the gamma-function.
1) Euler's functional equation:
$ $ |
or
$ $ |
$ $, $ $ if $ $ is an integer; it is assumed that $ $.
2) Euler's completion formula:
$ $ |
In particular, $ $;
$ $ |
if $ $ is an integer;
$ $ |
3) Gauss' multiplication formula:
$ $ |
If $ $, this is the Legendre duplication formula.
4) If $ $ or $ $, then $ $ can be asymptotically expanded into the Stirling series:
$ $ |
$ $ |
where $ $ are the Bernoulli numbers. It implies the equality
$ $ |
$ $ |
In particular,
$ $ |
More accurate is Sonin's formula [6]:
$ $ |
5) In the real domain, $ $ for $ $ and it assumes the sign $ $ on the segments $ $, $ $ (Fig. b).
Figure: g043310b
The graph of the function $ $.
For all real $ $ the inequality
$ $ |
is valid, i.e. all branches of both $ $ and $ $ are convex functions. The property of logarithmic convexity defines the gamma-function among all solutions of the functional equation
$ $ |
up to a constant factor.
For positive values of $ $ the gamma-function has a unique minimum at $ $ equal to $ $. The local minima of the function $ $ form a sequence tending to zero as $ $.
Figure: g043310c
The graph of the function $ $.
6) In the complex domain, if $ $, the gamma-function rapidly decreases as $ $,
$ $ |
7) The function $ $ (Fig. c) is an entire function of order one and of maximal type; asymptotically, as $ $,
$ $ |
where
$ $ |
It can be represented by the infinite Weierstrass product:
$ $ |
which converges absolutely and uniformly on any compact set in the complex plane ($ $ is the Euler constant). A Hankel integral representation is valid:
$ $ |
where the contour $ $ is shown in Fig. d.
Figure: g043310d
$ $
G.F. Voronoi [7] obtained integral representations for powers of the gamma-function.
In applications, the so-called poly gamma-functions — $ $-th derivatives of $ $ — are of importance. The function (Gauss' $ $-function)
$ $ |
$ $ |
is meromorphic, has simple poles at the points $ $ and satisfies the functional equation
$ $ |
The representation of $ $ for $ $ yields the formula
$ $ |
where
$ $ |
This formula may be used to compute $ $ in a neighbourhood of the point $ $.
For other poly gamma-functions see [2]. Theincomplete gamma-function is defined by the equation
$ $ |
The functions $ $ and $ $ are transcendental functions which do not satisfy any linear differential equation with rational coefficients (Hölder's theorem).
The exceptional importance of the gamma-function in mathematical analysis is due to the fact that it can be used to express a large number of definite integrals, infinite products and sums of series (see, for example, Beta-function). In addition, it is widely used in the theory of special functions (thehypergeometric function, of which the gamma-function is a limit case, cylinder functions, etc.), in analytic number theory, etc.
References
[1] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) |
[2] | H. Bateman (ed.) A. Erdélyi (ed.) , Higher transcendental functions , 1. The gamma function. The hypergeometric functions. Legendre functions , McGraw-Hill (1953) |
[3] | N. Bourbaki, "Elements of mathematics. Functions of a real variable" , Addison-Wesley (1976) (Translated from French) |
[4] | , Math. anal., functions, limits, series, continued fractions , Handbook Math. Libraries , Moscow (1961) (In Russian) |
[5] | N. Nielsen, "Handbuch der Theorie der Gammafunktion" , Chelsea, reprint (1965) |
[6] | N.Ya. Sonin, "Studies on cylinder functions and special polynomials" , Moscow (1954) (In Russian) |
[7] | G.F. Voronoi, "Studies of primitive parallelotopes" , Collected works , 2 , Kiev (1952) pp. 239–368 (In Russian) |
[8] | E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German) |
[9] | A. Angot, "Compléments de mathématiques. A l'usage des ingénieurs de l'electrotechnique et des télécommunications" , C.N.E.T. (1957) |
Comments
The $ $-analogue of the gamma-function is given by
$ $ |
$ $ |
cf. [a2]. Its origin goes back to E. Heine (1847) and D. Jackson (1904). For the gamma-function see also[a1].
References
[a1] | E. Artin, "The gamma function" , Holt, Rinehart & Winston (1964) |
[a2] | R. Askey, "The $ $-Gamma and $ $-Beta functions" Appl. Anal. , 8 (1978) pp. 125–141 |
Gamma-function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gamma-function&oldid=25552