Namespaces
Variants
Actions

Difference between revisions of "Tilted algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 11: Line 11:
 
The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010017.png" /> is called a tilted algebra of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010019.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010020.png" /> becomes an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010021.png" />-bimodule (cf. also [[Bimodule|Bimodule]]).
 
The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010017.png" /> is called a tilted algebra of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010019.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010020.png" /> becomes an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010021.png" />-bimodule (cf. also [[Bimodule|Bimodule]]).
  
In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010022.png" />-mod, the [[Category|category]] of finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010023.png" />-modules, the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010024.png" /> defines a torsion pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010025.png" /> with torsion class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010026.png" /> consisting of modules, generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010027.png" /> and torsion-free class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010028.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010029.png" />-mod it defines the torsion pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010030.png" /> with torsion class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010031.png" /> and torsion-free class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010032.png" />. The Brenner–Butler theorem says that the functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010033.png" />, respectively <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010034.png" />, induce equivalences between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010036.png" />, whereas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010037.png" />, respectively <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010038.png" />, induce equivalences between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010040.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010041.png" />-mod the torsion pair is splitting, that is, any indecomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010042.png" />-module is either torsion or torsion-free. In this sense, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010043.png" />-mod has "less" indecomposable modules, and information on the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010044.png" />-mod can be transferred to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010045.png" />-mod.
+
In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010022.png" />-mod, the [[Category|category]] of finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010023.png" />-modules, the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010024.png" /> defines a torsion pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010025.png" /> with torsion class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010026.png" /> consisting of modules, generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010027.png" /> and torsion-free class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010028.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010029.png" />-mod it defines the torsion pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010030.png" /> with torsion class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010031.png" /> and torsion-free class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010032.png" />. The Brenner–Butler theorem says that the functors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010033.png" />, respectively <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010034.png" />, induce equivalences between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010036.png" />, whereas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010037.png" />, respectively <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010038.png" />, induce equivalences between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010040.png" />. In <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010041.png" />-mod the torsion pair is splitting, that is, any indecomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010042.png" />-module is either torsion or torsion-free. In this sense, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010043.png" />-mod has "less" indecomposable modules, and information on the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010044.png" />-mod can be transferred to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010045.png" />-mod.
  
 
For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010046.png" /> has global dimension at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010047.png" /> and any indecomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010048.png" />-module has projective dimension or injective dimension at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010049.png" /> (cf. also [[Dimension|Dimension]] for dimension notions). These condition characterize the more general class of quasi-tilted algebras.
 
For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010046.png" /> has global dimension at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010047.png" /> and any indecomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010048.png" />-module has projective dimension or injective dimension at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t130/t130100/t13010049.png" /> (cf. also [[Dimension|Dimension]] for dimension notions). These condition characterize the more general class of quasi-tilted algebras.
Line 24: Line 24:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I. Assem,   "Tilting theory - an introduction" N. Balcerzyk (ed.) et al. (ed.) , ''Topics in Algebra'' , '''26''' , Banach Center Publ. (1990) pp. 127–180</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Auslander,   M.I. Platzeck,   I. Reiten,   "Coxeter functors without diagrams" ''Trans. Amer. Math. Soc.'' , '''250''' (1979) pp. 1–46</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Brenner,   M. Butler,   "Generalizations of the Bernstein–Gelfand–Ponomarev reflection functors" V. Dlab (ed.) P. Gabriel (ed.) , ''Representation Theory II. Proc. ICRA II'' , ''Lecture Notes in Mathematics'' , '''832''' , Springer (1980) pp. 103–169</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> I.N. Bernstein,   I.M. Gelfand,   V.A. Ponomarow,   "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' (1973) pp. 17–32</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K. Bongartz,   "Tilted algebras" M. Auslander (ed.) E. Lluis (ed.) , ''Representations of Algebras. Proc. ICRA III'' , ''Lecture Notes in Mathematics'' , '''903''' , Springer (1981) pp. 26–38</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> D. Happel,   "Triangulated categories in the representation theory of finite dimensional algebras" , ''London Math. Soc. Lecture Notes'' , '''119''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Happel,   C.M. Ringel,   "Tilted algebras" ''Trans. Amer. Math. Soc.'' , '''274''' (1982) pp. 399–443</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> D. Happel,   I. Reiten,   S.O. Smalø,   "Tilting in abelian categories and quasitilted algebras" ''Memoirs Amer. Math. Soc.'' , '''575''' (1996)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> O. Kerner,   "Tilting wild algebras" ''J. London Math. Soc.'' , '''39''' : 2 (1989) pp. 29–47</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> O. Kerner,   "Wild tilted algebras revisited" ''Colloq. Math.'' , '''73''' (1997) pp. 67–81</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> S. Liu,   "The connected components of the Auslander–Reiten quiver of a tilted algebra" ''J. Algebra'' , '''161''' (1993) pp. 505–523</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> C.M. Ringel,   "The regular components of the Auslander–Reiten Quiver of a tilted algebra" ''Chinese Ann. Math. Ser. B.'' , '''9''' (1988) pp. 1–18</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> C.M. Ringel,   "Tame algebras and integral quadratic forms" , ''Lecture Notes in Mathematics'' , '''1099''' , Springer (1984)</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> H. Strauss,   "On the perpendicular category of a partial tilting module" ''J. Algebra'' , '''144''' (1991) pp. 43–66</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I. Assem, "Tilting theory - an introduction" N. Balcerzyk (ed.) et al. (ed.) , ''Topics in Algebra'' , '''26''' , Banach Center Publ. (1990) pp. 127–180 {{MR|1171230}} {{ZBL|0726.16008}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Auslander, M.I. Platzeck, I. Reiten, "Coxeter functors without diagrams" ''Trans. Amer. Math. Soc.'' , '''250''' (1979) pp. 1–46 {{MR|0530043}} {{ZBL|0421.16016}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Brenner, M. Butler, "Generalizations of the Bernstein–Gelfand–Ponomarev reflection functors" V. Dlab (ed.) P. Gabriel (ed.) , ''Representation Theory II. Proc. ICRA II'' , ''Lecture Notes in Mathematics'' , '''832''' , Springer (1980) pp. 103–169 {{MR|0607151}} {{ZBL|0446.16031}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> I.N. Bernstein, I.M. Gelfand, V.A. Ponomarow, "Coxeter functors and Gabriel's theorem" ''Russian Math. Surveys'' , '''28''' (1973) pp. 17–32</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> K. Bongartz, "Tilted algebras" M. Auslander (ed.) E. Lluis (ed.) , ''Representations of Algebras. Proc. ICRA III'' , ''Lecture Notes in Mathematics'' , '''903''' , Springer (1981) pp. 26–38 {{MR|0654701}} {{ZBL|0478.16025}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> D. Happel, "Triangulated categories in the representation theory of finite dimensional algebras" , ''London Math. Soc. Lecture Notes'' , '''119''' , Cambridge Univ. Press (1988) {{MR|0935124}} {{ZBL|0635.16017}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> D. Happel, C.M. Ringel, "Tilted algebras" ''Trans. Amer. Math. Soc.'' , '''274''' (1982) pp. 399–443 {{MR|0675063}} {{MR|0662711}} {{ZBL|0503.16024}} {{ZBL|0489.16025}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> D. Happel, I. Reiten, S.O. Smalø, "Tilting in abelian categories and quasitilted algebras" ''Memoirs Amer. Math. Soc.'' , '''575''' (1996) {{MR|1327209}} {{ZBL|0849.16011}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> O. Kerner, "Tilting wild algebras" ''J. London Math. Soc.'' , '''39''' : 2 (1989) pp. 29–47 {{MR|0989917}} {{ZBL|0675.16013}} </TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> O. Kerner, "Wild tilted algebras revisited" ''Colloq. Math.'' , '''73''' (1997) pp. 67–81 {{MR|1436951}} {{ZBL|0879.16006}} </TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> S. Liu, "The connected components of the Auslander–Reiten quiver of a tilted algebra" ''J. Algebra'' , '''161''' (1993) pp. 505–523 {{MR|1247369}} {{ZBL|0818.16014}} </TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> C.M. Ringel, "The regular components of the Auslander–Reiten Quiver of a tilted algebra" ''Chinese Ann. Math. Ser. B.'' , '''9''' (1988) pp. 1–18 {{MR|0943675}} {{ZBL|0667.16024}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> C.M. Ringel, "Tame algebras and integral quadratic forms" , ''Lecture Notes in Mathematics'' , '''1099''' , Springer (1984) {{MR|0774589}} {{ZBL|0546.16013}} </TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> H. Strauss, "On the perpendicular category of a partial tilting module" ''J. Algebra'' , '''144''' (1991) pp. 43–66 {{MR|1136894}} {{ZBL|0746.16009}} </TD></TR></table>

Revision as of 17:35, 31 March 2012

The endomorphism ring of a tilting module over a finite-dimensional hereditary algebra (cf. also Algebra; Endomorphism).

Let be a finite-dimensional hereditary -algebra, some field, for example the path-algebra of some finite quiver without oriented cycles. A finite-dimensional -module is called a tilting module if

i) , which always is satisfied in this context;

ii) ; and

iii) there exists a short exact sequence with and in , the category of finite direct sums of direct summands of . Here, is projective dimension. The third condition also says that is maximal with respect to the property . Note further, that a tilting module over a hereditary algebra is uniquely determined by its composition factors. Cf. also Tilting module.

The algebra is called a tilted algebra of type , and becomes an -bimodule (cf. also Bimodule).

In -mod, the category of finite-dimensional -modules, the module defines a torsion pair with torsion class consisting of modules, generated by and torsion-free class . In -mod it defines the torsion pair with torsion class and torsion-free class . The Brenner–Butler theorem says that the functors , respectively , induce equivalences between and , whereas , respectively , induce equivalences between and . In -mod the torsion pair is splitting, that is, any indecomposable -module is either torsion or torsion-free. In this sense, -mod has "less" indecomposable modules, and information on the category -mod can be transferred to -mod.

For example, has global dimension at most and any indecomposable -module has projective dimension or injective dimension at most (cf. also Dimension for dimension notions). These condition characterize the more general class of quasi-tilted algebras.

The indecomposable injective -modules are in the torsion class and their images under the tilting functor are contained in one connected component of the Auslander–Reiten quiver of -mod (cf. also Quiver; Riedtmann classification), and they form a complete slice in this component. Moreover, the existence of such a complete slice in a connected component of characterizes tilted algebras. Moreover, the Auslander–Reiten quiver of a tilted algebra always contains pre-projective and pre-injective components.

If is a basic hereditary algebra and is a simple projective module, then , where denotes the Auslander–Reiten translation (cf. Riedtmann classification), is a tilting module, sometimes called APR-tilting module. The induced torsion pair in -mod is splitting and is the unique indecomposable module in . The tilting functor corresponds to the reflection functor introduced by I.N. Bernshtein, I.M. Gel'fand and V.A. Ponomarev for their proof of the Gabriel theorem [a4].

If the hereditary algebra is representation-finite (cf. also Algebra of finite representation type), then any tilted algebra of type also is representation-finite. If is tame (cf. also Representation of an associative algebra), then a tilted algebra of type either is tame and one-parametric, or representation-finite. The latter case is equivalent to the fact that the tilting module contains non-zero pre-projective and pre-injective direct summands simultaneously. If is wild (cf. also Representation of an associative algebra), then a tilted algebra of type may be wild, or tame domestic, or representation-finite.

See also Tilting theory.

References

[a1] I. Assem, "Tilting theory - an introduction" N. Balcerzyk (ed.) et al. (ed.) , Topics in Algebra , 26 , Banach Center Publ. (1990) pp. 127–180 MR1171230 Zbl 0726.16008
[a2] M. Auslander, M.I. Platzeck, I. Reiten, "Coxeter functors without diagrams" Trans. Amer. Math. Soc. , 250 (1979) pp. 1–46 MR0530043 Zbl 0421.16016
[a3] S. Brenner, M. Butler, "Generalizations of the Bernstein–Gelfand–Ponomarev reflection functors" V. Dlab (ed.) P. Gabriel (ed.) , Representation Theory II. Proc. ICRA II , Lecture Notes in Mathematics , 832 , Springer (1980) pp. 103–169 MR0607151 Zbl 0446.16031
[a4] I.N. Bernstein, I.M. Gelfand, V.A. Ponomarow, "Coxeter functors and Gabriel's theorem" Russian Math. Surveys , 28 (1973) pp. 17–32
[a5] K. Bongartz, "Tilted algebras" M. Auslander (ed.) E. Lluis (ed.) , Representations of Algebras. Proc. ICRA III , Lecture Notes in Mathematics , 903 , Springer (1981) pp. 26–38 MR0654701 Zbl 0478.16025
[a6] D. Happel, "Triangulated categories in the representation theory of finite dimensional algebras" , London Math. Soc. Lecture Notes , 119 , Cambridge Univ. Press (1988) MR0935124 Zbl 0635.16017
[a7] D. Happel, C.M. Ringel, "Tilted algebras" Trans. Amer. Math. Soc. , 274 (1982) pp. 399–443 MR0675063 MR0662711 Zbl 0503.16024 Zbl 0489.16025
[a8] D. Happel, I. Reiten, S.O. Smalø, "Tilting in abelian categories and quasitilted algebras" Memoirs Amer. Math. Soc. , 575 (1996) MR1327209 Zbl 0849.16011
[a9] O. Kerner, "Tilting wild algebras" J. London Math. Soc. , 39 : 2 (1989) pp. 29–47 MR0989917 Zbl 0675.16013
[a10] O. Kerner, "Wild tilted algebras revisited" Colloq. Math. , 73 (1997) pp. 67–81 MR1436951 Zbl 0879.16006
[a11] S. Liu, "The connected components of the Auslander–Reiten quiver of a tilted algebra" J. Algebra , 161 (1993) pp. 505–523 MR1247369 Zbl 0818.16014
[a12] C.M. Ringel, "The regular components of the Auslander–Reiten Quiver of a tilted algebra" Chinese Ann. Math. Ser. B. , 9 (1988) pp. 1–18 MR0943675 Zbl 0667.16024
[a13] C.M. Ringel, "Tame algebras and integral quadratic forms" , Lecture Notes in Mathematics , 1099 , Springer (1984) MR0774589 Zbl 0546.16013
[a14] H. Strauss, "On the perpendicular category of a partial tilting module" J. Algebra , 144 (1991) pp. 43–66 MR1136894 Zbl 0746.16009
How to Cite This Entry:
Tilted algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tilted_algebra&oldid=24132
This article was adapted from an original article by O. Kerner (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article