Namespaces
Variants
Actions

Difference between revisions of "Galois theory of rings"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 13: Line 13:
 
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318020.png" />;
 
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318020.png" />;
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318021.png" />. Unlike the Galois theory of fields, (even when the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318022.png" /> is finite) the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318023.png" /> is not always valid, while the correspondences 1), 2) and 1), 3) need not be mutually inverse. It is of interest, accordingly, to single out families of subrings and families of subgroups for which the analogue of the theorem on [[Galois correspondence|Galois correspondence]] is valid. This problem has found a positive solution in two cases. The first one involves the requirements of "proximity" between the properties of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318024.png" /> and the properties of a field (e.g. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318025.png" /> is a skew-field or a complete ring of linear transformations of a vector space over a skew-field); the second is the requirement of "proximity" between the structure of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318026.png" /> over a subring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318027.png" /> to the structure of the corresponding pair if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318028.png" /> is a field (e.g. the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318029.png" />-module is projective).
+
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318021.png" />. Unlike the Galois theory of fields, (even when the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318022.png" /> is finite) the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318023.png" /> is not always valid, while the correspondences 1), 2) and 1), 3) need not be mutually inverse. It is of interest, accordingly, to single out families of subrings and families of subgroups for which the analogue of the theorem on [[Galois correspondence|Galois correspondence]] is valid. This problem has found a positive solution in two cases. The first one involves the requirements of "proximity" between the properties of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318024.png" /> and the properties of a field (e.g. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318025.png" /> is a skew-field or a complete ring of linear transformations of a vector space over a skew-field); the second is the requirement of "proximity" between the structure of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318026.png" /> over a subring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318027.png" /> to the structure of the corresponding pair if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318028.png" /> is a field (e.g. the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318029.png" />-module is projective).
  
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318030.png" /> be an invertible element of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318031.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318032.png" /> be the automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318033.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318035.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318036.png" /> be the subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318037.png" /> generated by the invertible elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318038.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318039.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318040.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318042.png" />-group if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318043.png" /> for all invertible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318044.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318045.png" /> is a skew-field, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318046.png" /> is a sub-skew-field of it, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318047.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318048.png" /> is a finite-dimensional left vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318049.png" />, then the Galois correspondences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318051.png" /> are mutually inverse, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318052.png" /> belongs to the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318053.png" />-subgroups of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318055.png" /> to the set of all skew-fields of the sub-skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318056.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318057.png" />.
 
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318030.png" /> be an invertible element of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318031.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318032.png" /> be the automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318033.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318035.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318036.png" /> be the subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318037.png" /> generated by the invertible elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318038.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318039.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318040.png" /> is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318042.png" />-group if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318043.png" /> for all invertible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318044.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318045.png" /> is a skew-field, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318046.png" /> is a sub-skew-field of it, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318047.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318048.png" /> is a finite-dimensional left vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318049.png" />, then the Galois correspondences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318051.png" /> are mutually inverse, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318052.png" /> belongs to the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318053.png" />-subgroups of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318055.png" /> to the set of all skew-fields of the sub-skew-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318056.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043180/g04318057.png" />.
Line 30: Line 30:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson,   "Structure of rings" , Amer. Math. Soc. (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.U. Chase,   M.E. Swedler,   "Hopf algebras and Galois theory" , Springer (1969)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F. de Meyer,   E. Ingraham,   "Separable algebras over commutative rings" , ''Lect. notes in math.'' , '''181''' , Springer (1971)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.R. Magid,   "The separable Galois theory of commutative rings" , M. Dekker (1974)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956) {{MR|0081264}} {{ZBL|0073.02002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.U. Chase, M.E. Swedler, "Hopf algebras and Galois theory" , Springer (1969) {{MR|0260724}} {{ZBL|0197.01403}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> F. de Meyer, E. Ingraham, "Separable algebras over commutative rings" , ''Lect. notes in math.'' , '''181''' , Springer (1971) {{MR|280479}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.R. Magid, "The separable Galois theory of commutative rings" , M. Dekker (1974) {{MR|0352075}} {{ZBL|0284.13004}} </TD></TR></table>
  
  
Line 38: Line 38:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.U. Chase,   D.K. Harrison,   A. Rosenberg,   "Galois theory and Galois cohomology of commutative rings" , ''Mem. Amer. Math. Soc.'' , '''52''' , Amer. Math. Soc. (1965)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S.U. Chase, D.K. Harrison, A. Rosenberg, "Galois theory and Galois cohomology of commutative rings" , ''Mem. Amer. Math. Soc.'' , '''52''' , Amer. Math. Soc. (1965) {{MR|0195922}} {{ZBL|0143.05902}} </TD></TR></table>

Revision as of 17:32, 31 March 2012

A generalization of the results of the theory of Galois fields (cf. Galois theory and Galois group) to the case of associative rings with a unit element. Let be an associative ring with a unit element, let be some subgroup of the group of all automorphisms of , let be a subgroup of , let

and let . The set will then be a subring of . Let be a subring of . One says that an automorphism of leaves invariant elementwise if for all . The set of all such automorphisms is denoted by . Let

The principal subject of the Galois theory of rings are the correspondences:

1) ;

2) ;

3) . Unlike the Galois theory of fields, (even when the group is finite) the equality is not always valid, while the correspondences 1), 2) and 1), 3) need not be mutually inverse. It is of interest, accordingly, to single out families of subrings and families of subgroups for which the analogue of the theorem on Galois correspondence is valid. This problem has found a positive solution in two cases. The first one involves the requirements of "proximity" between the properties of the ring and the properties of a field (e.g. is a skew-field or a complete ring of linear transformations of a vector space over a skew-field); the second is the requirement of "proximity" between the structure of the ring over a subring to the structure of the corresponding pair if is a field (e.g. the -module is projective).

Let be an invertible element of the ring , let be the automorphism of defined by , , and let be the subalgebra of generated by the invertible elements for which . The group is called an -group if for all invertible . If is a skew-field, if is a sub-skew-field of it, if , and if is a finite-dimensional left vector space over , then the Galois correspondences and are mutually inverse, where belongs to the set of all -subgroups of the group and to the set of all skew-fields of the sub-skew-field containing .

A similar result is also valid if is a complete ring of linear transformations (but the corresponding system of conditions singling out the families of subgroups and families of subrings is formulated in a somewhat more complicated manner).

Further, let be a commutative ring without non-trivial idempotents and let . The ring is called a finite normal extension of a ring if and is a finitely-generated -module. The ring may be considered to be an -module by assuming

where . The ring is called a separable -algebra if is a projective -module. If is a finite normal separable extension of the ring , then is a finitely-generated projective -module, the group is finite and the mappings , define mutually-inverse relations between the set of all subgroups of the group and the set of all separable -subalgebras of the algebra .

Any ring has a separable closure, which is an analogue of the separable closure of a field. The group of all automorphisms of this closure which leave invariant elementwise is, in the general case, a profinite group. The correspondences 1) and 2) are mutually inverse on the set of all closed subgroups of the resulting group and on the set of all separable -subalgebras of the separable closure of the ring .

Similar results are also valid if the ring contains non-trivial idempotents. However, this involves substantial changes in a number of basic concepts. For instance, the role of the Galois group is taken over by the fundamental groupoid.

References

[1] N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956) MR0081264 Zbl 0073.02002
[2] S.U. Chase, M.E. Swedler, "Hopf algebras and Galois theory" , Springer (1969) MR0260724 Zbl 0197.01403
[3] F. de Meyer, E. Ingraham, "Separable algebras over commutative rings" , Lect. notes in math. , 181 , Springer (1971) MR280479
[4] A.R. Magid, "The separable Galois theory of commutative rings" , M. Dekker (1974) MR0352075 Zbl 0284.13004


Comments

References

[a1] S.U. Chase, D.K. Harrison, A. Rosenberg, "Galois theory and Galois cohomology of commutative rings" , Mem. Amer. Math. Soc. , 52 , Amer. Math. Soc. (1965) MR0195922 Zbl 0143.05902
How to Cite This Entry:
Galois theory of rings. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Galois_theory_of_rings&oldid=24073
This article was adapted from an original article by K.I. BeidarA.V. Mikhalev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article