Namespaces
Variants
Actions

Difference between revisions of "Cramér theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Cramer theorem to Cramér theorem over redirect: accented title)
m (MR/ZBL numbers added)
Line 16: Line 16:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cramér,   "Sur un nouveau théorème-limite de la théorie des probabilités" , ''Act. Sci. et Ind.'' , '''736''' , Hermann (1938)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.A. Ibragimov,   Yu.V. Linnik,   "Independent and stationary sequences of random variables" , Wolters-Noordhoff (1971) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.V. Petrov,   "Sums of independent random variables" , Springer (1975) (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cramér, "Sur un nouveau théorème-limite de la théorie des probabilités" , ''Act. Sci. et Ind.'' , '''736''' , Hermann (1938) {{MR|}} {{ZBL|64.0529.01}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.A. Ibragimov, Yu.V. Linnik, "Independent and stationary sequences of random variables" , Wolters-Noordhoff (1971) (Translated from Russian) {{MR|0322926}} {{ZBL|0219.60027}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) {{MR|0388499}} {{ZBL|0322.60043}} {{ZBL|0322.60042}} </TD></TR></table>
  
  
Line 24: Line 24:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.S. Ellis,   "Entropy, large deviations, and statistical mechanics" , Springer (1985)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.S. Ellis, "Entropy, large deviations, and statistical mechanics" , Springer (1985) {{MR|0793553}} {{ZBL|0566.60097}} </TD></TR></table>

Revision as of 10:30, 27 March 2012

2020 Mathematics Subject Classification: Primary: 60F10 [MSN][ZBL]

An integral limit theorem for the probability of large deviations of sums of independent random variables. Let be a sequence of independent random variables with the same non-degenerate distribution function , such that and such that the generating function of the moments is finite in some interval (this last condition is known as the Cramér condition). Let

If , as , then

Here is the normal distribution function and is the so-called Cramér series, the coefficients of which depend only on the moments of the random variable ; this series is convergent for all sufficiently small . Actually, the original result, obtained by H. Cramér in 1938, was somewhat weaker than that just described.

References

[1] H. Cramér, "Sur un nouveau théorème-limite de la théorie des probabilités" , Act. Sci. et Ind. , 736 , Hermann (1938) Zbl 64.0529.01
[2] I.A. Ibragimov, Yu.V. Linnik, "Independent and stationary sequences of random variables" , Wolters-Noordhoff (1971) (Translated from Russian) MR0322926 Zbl 0219.60027
[3] V.V. Petrov, "Sums of independent random variables" , Springer (1975) (Translated from Russian) MR0388499 Zbl 0322.60043 Zbl 0322.60042


Comments

See also Limit theorems; Probability of large deviations.

References

[a1] R.S. Ellis, "Entropy, large deviations, and statistical mechanics" , Springer (1985) MR0793553 Zbl 0566.60097
How to Cite This Entry:
Cramér theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cram%C3%A9r_theorem&oldid=23599
This article was adapted from an original article by V.V. Petrov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article