Namespaces
Variants
Actions

Difference between revisions of "Sierpiński curve"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Sierpiński curve to Sierpinski curve: ascii title)
m (moved Sierpinski curve to Sierpiński curve over redirect: accented title)
 
(No difference)

Latest revision as of 07:55, 26 March 2012

Sierpiński carpet

An example of a Cantor curve that contains a subset homeomorphic to any given Cantor curve. It was constructed by W. Sierpiński ; for its construction see Line (curve). This curve has at each point continual branching index.

References

[1a] W. Sierpiński, "Sur une courbe dont tout point est un point de ramification" C.R. Acad. Sci. Paris , 160 (1915) pp. 302–305
[1b] W. Sierpiński, "Sur une courbe cantorienne qui contient une image binniro que et continue de toute courbe donnée" C.R. Acad. Sci. Paris , 162 (1916) pp. 629–632
[2] P.S. Aleksandrov, "Einführung in die Mengenlehre und die allgemeine Topologie" , Deutsch. Verlag Wissenschaft. (1984) (Translated from Russian)
[3] K. Kuratowski, "Topology" , 2 , Acad. Press (1968) (Translated from French)
How to Cite This Entry:
Sierpiński curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sierpi%C5%84ski_curve&oldid=23526
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article