Difference between revisions of "Geometric distribution"
(Importing text file) |
(MSC|60E99 Category:Distribution theory) |
||
Line 1: | Line 1: | ||
+ | {{MSC|60E99}} | ||
+ | |||
+ | [[Category:Distribution theory]] | ||
+ | |||
The distribution of a discrete random variable assuming non-negative integral values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044230/g0442301.png" /> with probabilities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044230/g0442302.png" />, where the distribution parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044230/g0442303.png" /> is a number in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044230/g0442304.png" />. The characteristic function is | The distribution of a discrete random variable assuming non-negative integral values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044230/g0442301.png" /> with probabilities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044230/g0442302.png" />, where the distribution parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044230/g0442303.png" /> is a number in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044230/g0442304.png" />. The characteristic function is | ||
Revision as of 17:54, 22 February 2012
2020 Mathematics Subject Classification: Primary: 60E99 [MSN][ZBL]
The distribution of a discrete random variable assuming non-negative integral values with probabilities , where the distribution parameter is a number in . The characteristic function is
the mathematical expectation is ; the variance is ; the generating function is
Figure: g044230a
A geometric distribution of probability .
Figure: g044230b
The distribution function .
The random variable equal to the number of independent trials prior to the first successful outcome with a probability of success and a probability of failure has a geometric distribution. The name originates from the geometric progression which generates such a distribution.
Geometric distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Geometric_distribution&oldid=21286