Difference between revisions of "Algebraically closed field"
Ulf Rehmann (talk | contribs) m (tex,msc, refs) |
Ulf Rehmann (talk | contribs) m (→References: MR/ZBL) |
||
Line 21: | Line 21: | ||
{| | {| | ||
|- | |- | ||
− | |valign="top"|{{Ref|La}}||valign="top"| S. Lang, "Algebra", Addison-Wesley (1974) | + | |valign="top"|{{Ref|La}}||valign="top"| S. Lang, "Algebra", Addison-Wesley (1974) {{MR|0783636}} {{ZBL|0712.00001}} |
|- | |- | ||
− | |valign="top"|{{Ref|ZaSa}}||valign="top"| O. Zariski, P. Samuel, "Commutative algebra", '''1''', Springer (1975) | + | |valign="top"|{{Ref|ZaSa}}||valign="top"| O. Zariski, P. Samuel, "Commutative algebra", '''1''', Springer (1975) {{MR|0384768}} {{ZBL|0313.13001}} |
|- | |- | ||
|} | |} |
Revision as of 18:58, 18 February 2012
2020 Mathematics Subject Classification: Primary: 12Exx Secondary: 12Fxx [MSN][ZBL]
A field $k$ is algebraically closed if any polynomial of non-zero degree over $k$ has at least one root in $k$. In fact, it follows that for an algebraically closed field $k$ each polynomial of degree $n$ over $k$ has exactly $n$ roots in $k$, i.e. each irreducible polynomial from the ring of polynomials $k[x]$ is of degree one. A field $k$ is algebraically closed if and only if it has no proper algebraic extension (cf. Extension of a field). For any field $k$, there exists a unique (up to isomorphism) algebraic extension of $k$ that is algebraically closed; it is called the algebraic closure of $k$ and is usually denoted by $\bar k$. Any algebraically closed field containing $k$ contains a subfield isomorphic to $k$.
The field of complex numbers is the algebraic closure of the field of real numbers. This is the fundamental theorem of algebra (cf. Algebra, fundamental theorem of).
References
[La] | S. Lang, "Algebra", Addison-Wesley (1974) MR0783636 Zbl 0712.00001 |
[ZaSa] | O. Zariski, P. Samuel, "Commutative algebra", 1, Springer (1975) MR0384768 Zbl 0313.13001 |
Algebraically closed field. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Algebraically_closed_field&oldid=21182