|
|
Line 1: |
Line 1: |
− | A field extension that is not algebraic (cf. [[Extension of a field|Extension of a field]]). An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t0936201.png" /> is transcendental if and only if the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t0936202.png" /> contains elements that are transcendental over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t0936203.png" />, that is, elements that are not roots of any non-zero polynomial with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t0936204.png" />.
| + | {{TEX|done}} |
| + | {{MSC|12Fxx}} |
| | | |
− | The elements of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t0936205.png" /> are called algebraically independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t0936206.png" /> if for any finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t0936207.png" /> and any non-zero polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t0936208.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t0936209.png" />,
| + | A transcendental extension of a field $k$ is |
| + | a field extension that is not algebraic (cf. |
| + | [[Extension of a field|Extension of a field]]). An extension $K/k$ is |
| + | transcendental if and only if the field $K$ contains elements that are |
| + | transcendental over $k$, that is, elements that are not roots of any |
| + | non-zero polynomial with coefficients in $k$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362010.png" /></td> </tr></table>
| + | The elements of a set $X\subset K$ are called algebraically independent over |
| + | $k$ if for any finite set $x_1,\dots,x_m \in X$ and any non-zero polynomial $F(X_1,\dots,X_m)$ with |
| + | coefficients in $k$, |
| + | $$F(x_1,\dots,x_m)\ne 0.$$ |
| + | The elements of $X$ are transcendental over |
| + | $k$. If $X\subset K$ is a maximal set of algebraically independent elements |
| + | over $k$, then $X$ is called a transcendence basis of $K$ over |
| + | $k$. The cardinality of $X$ is called the transcendence degree of $K$ |
| + | over $k$ and is an invariant of the extension $K/k$. For a |
| + | [[Tower of fields|tower of fields]] $L\supset K\supset k$, the transcendence degree of |
| + | $L/k$ is equal to the sum of the transcendence degrees of $L/K$ and $K/k$. |
| | | |
− | The elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362011.png" /> are transcendental over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362013.png" /> is a maximal set of algebraically independent elements over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362014.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362015.png" /> is called a transcendence basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362016.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362017.png" />. The cardinality of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362018.png" /> is called the transcendence degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362019.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362020.png" /> and is an invariant of the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362021.png" />. For a [[Tower of fields|tower of fields]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362022.png" />, the transcendence degree of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362023.png" /> is equal to the sum of the transcendence degrees of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362025.png" />.
| + | If all elements of a set $X$ are algebraically independent over $k$, |
| + | then the extension $k(X)$ is called purely transcendental. In this case |
| + | the field $k(X)$ is isomorphic to the field of rational functions in the |
| + | set of variables $X$ over $k$. Any field extension $L/k$ can be |
| + | represented as a tower of extensions $L\supset K\supset k$, where $L/K$ is an algebraic |
| + | and $K/k$ is a purely transcendental extension. If $K$ can be chosen so |
| + | that $L/K$ is a |
| + | [[Separable extension|separable extension]], then the extension $K/k$ is |
| + | called separably generated, and the transcendence basis of $K$ over |
| + | $k$ is called a separating basis. If $L$ is separably generated over |
| + | $k$, then $L$ is separable over $k$. In the case when the extension |
| + | $L/k$ is finitely generated, the converse holds as well. By definition, |
| + | an extension $K/k$ is separable if and only if any derivation (cf. |
| + | [[Derivation in a ring|Derivation in a ring]]) of $k$ extends to |
| + | $K$. Such an extension is uniquely determined for any derivation if |
| + | and only if the extension $K/k$ is algebraic. |
| | | |
− | If all elements of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362026.png" /> are algebraically independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362027.png" />, then the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362028.png" /> is called purely transcendental. In this case the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362029.png" /> is isomorphic to the field of rational functions in the set of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362030.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362031.png" />. Any field extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362032.png" /> can be represented as a tower of extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362033.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362034.png" /> is an algebraic and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362035.png" /> is a purely transcendental extension. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362036.png" /> can be chosen so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362037.png" /> is a [[Separable extension|separable extension]], then the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362038.png" /> is called separably generated, and the transcendence basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362039.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362040.png" /> is called a separating basis. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362041.png" /> is separably generated over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362042.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362043.png" /> is separable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362044.png" />. In the case when the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362045.png" /> is finitely generated, the converse holds as well. By definition, an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362046.png" /> is separable if and only if any derivation (cf. [[Derivation in a ring|Derivation in a ring]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362047.png" /> extends to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362048.png" />. Such an extension is uniquely determined for any derivation if and only if the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362049.png" /> is algebraic.
| + | ====References==== |
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Algebra", ''Elements of mathematics'', '''1''', Springer (1988) pp. Chapt. 4–6 (Translated from French) |
| + | |- |
| + | |valign="top"|{{Ref|ZaSa}}||valign="top"| O. Zariski, P. Samuel, "Commutative algebra", '''1''', Springer (1975) |
| + | |- |
| + | |} |
| | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Zariski, P. Samuel, "Commutative algebra" , '''1''' , Springer (1975)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Algebra" , ''Elements of mathematics'' , '''1''' , Springer (1988) pp. Chapt. 4–6 (Translated from French)</TD></TR></table>
| |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | The Noether normalization lemma says that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362050.png" /> is an integral domain that is finitely generated as a ring over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362051.png" />, then there exist <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362052.png" /> that are algebraically independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362053.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362054.png" /> is integral over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093620/t09362055.png" />. | + | The Noether normalization lemma says that if $A$ is |
| + | an integral domain that is finitely generated as a ring over a field |
| + | $k$, then there exist $x_1,\dots,x_r \in A$ that are algebraically independent over $k$ |
| + | such that $A$ is integral over $k[x_1,\dots,x_r]$. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.M. Cohn, "Algebra" , '''1–2''' , Wiley (1989) pp. Vol. 2, 350; Vol. 3, 168ff</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Co}}||valign="top"| P.M. Cohn, "Algebra", '''1–2''', Wiley (1989) pp. Vol. 2, 350; Vol. 3, 168ff |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 12Fxx [MSN][ZBL]
A transcendental extension of a field $k$ is
a field extension that is not algebraic (cf.
Extension of a field). An extension $K/k$ is
transcendental if and only if the field $K$ contains elements that are
transcendental over $k$, that is, elements that are not roots of any
non-zero polynomial with coefficients in $k$.
The elements of a set $X\subset K$ are called algebraically independent over
$k$ if for any finite set $x_1,\dots,x_m \in X$ and any non-zero polynomial $F(X_1,\dots,X_m)$ with
coefficients in $k$,
$$F(x_1,\dots,x_m)\ne 0.$$
The elements of $X$ are transcendental over
$k$. If $X\subset K$ is a maximal set of algebraically independent elements
over $k$, then $X$ is called a transcendence basis of $K$ over
$k$. The cardinality of $X$ is called the transcendence degree of $K$
over $k$ and is an invariant of the extension $K/k$. For a
tower of fields $L\supset K\supset k$, the transcendence degree of
$L/k$ is equal to the sum of the transcendence degrees of $L/K$ and $K/k$.
If all elements of a set $X$ are algebraically independent over $k$,
then the extension $k(X)$ is called purely transcendental. In this case
the field $k(X)$ is isomorphic to the field of rational functions in the
set of variables $X$ over $k$. Any field extension $L/k$ can be
represented as a tower of extensions $L\supset K\supset k$, where $L/K$ is an algebraic
and $K/k$ is a purely transcendental extension. If $K$ can be chosen so
that $L/K$ is a
separable extension, then the extension $K/k$ is
called separably generated, and the transcendence basis of $K$ over
$k$ is called a separating basis. If $L$ is separably generated over
$k$, then $L$ is separable over $k$. In the case when the extension
$L/k$ is finitely generated, the converse holds as well. By definition,
an extension $K/k$ is separable if and only if any derivation (cf.
Derivation in a ring) of $k$ extends to
$K$. Such an extension is uniquely determined for any derivation if
and only if the extension $K/k$ is algebraic.
References
[Bo] |
N. Bourbaki, "Algebra", Elements of mathematics, 1, Springer (1988) pp. Chapt. 4–6 (Translated from French)
|
[ZaSa] |
O. Zariski, P. Samuel, "Commutative algebra", 1, Springer (1975)
|
The Noether normalization lemma says that if $A$ is
an integral domain that is finitely generated as a ring over a field
$k$, then there exist $x_1,\dots,x_r \in A$ that are algebraically independent over $k$
such that $A$ is integral over $k[x_1,\dots,x_r]$.
References
[Co] |
P.M. Cohn, "Algebra", 1–2, Wiley (1989) pp. Vol. 2, 350; Vol. 3, 168ff
|