|
|
Line 1: |
Line 1: |
− | ''of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595601.png" />''
| |
| | | |
− | Two subextensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595602.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595603.png" /> of an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595604.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595605.png" /> such that the subalgebra generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595606.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595607.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595608.png" /> is (isomorphic to) the [[Tensor product|tensor product]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l0595609.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956010.png" /> (cf. [[Extension of a field|Extension of a field]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956012.png" /> be arbitrary subrings of an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956014.png" />, containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956015.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956016.png" /> be the subring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956017.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956019.png" />. There is always a ring homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956020.png" /> that associates with an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956023.png" />, the product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956025.png" />. The algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956027.png" /> are said to be linearly disjoint over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956028.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956029.png" /> is an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956030.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956031.png" />. In this case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956032.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956034.png" /> to be linearly disjoint over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956035.png" /> it is sufficient that there is a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956036.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956037.png" /> that is independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956038.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956039.png" /> is a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956040.png" />, then the degree of the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956041.png" /> does not exceed the degree of extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956042.png" /> and equality holds if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059560/l05956044.png" /> are linearly disjoint.
| + | {{TEX|done}} |
− | | + | {{MSC|12Fxx}} |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algebra" , ''Elements of mathematics'' , '''1''' , Springer (1988) pp. Chapts. 4–7 (Translated from French)</TD></TR></table>
| |
− | | |
− | | |
− | | |
− | ====Comments====
| |
| | | |
| + | Two subextensions $A$ and $B$ of an extension $\def\O{\Omega}\O$ of $k$ are called linearly disjoint if the |
| + | subalgebra generated by $A$ and $B$ in $\O$ is (isomorphic to) the |
| + | [[Tensor product|tensor product]] $A\otimes B$ over $k$ (cf. |
| + | [[Extension of a field|Extension of a field]]). Let $A$ and $B$ be |
| + | arbitrary subrings of an extension $\O$ of $k$, containing $k$, and let |
| + | $C$ be the subring of $\O$ generated by $A$ and $B$. There is always a |
| + | ring homomorphism $\phi:A\otimes B \to C$ that associates with an element $x\otimes y\in A\otimes B$, $x\in A$, $y\in B$, |
| + | the product $xy$ in $C$. The algebras $A$ and $B$ are said to be |
| + | linearly disjoint over $k$ if $\phi$ is an isomorphism of $A\otimes B$ onto |
| + | $C$. In this case, $A\cap B = k$. For $A$ and $B$ to be linearly disjoint over |
| + | $k$ it is sufficient that there is a basis of $B$ over $k$ that is |
| + | independent over $A$. If $A$ is a finite extension of $k$, then the |
| + | degree of the extension $[B(A):B]$ does not exceed the degree of extension |
| + | $A:k$ and equality holds if and only if $A/k$ and $B/k$ are linearly |
| + | disjoint. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> O. Zariski, P. Samuel, "Commutative algebra" , '''1''' , Springer (1975)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Algebra", ''Elements of mathematics'', '''1''', Springer (1988) pp. Chapts. 4–7 (Translated from French) |
| + | |- |
| + | |valign="top"|{{Ref|ZaSa}}||valign="top"| O. Zariski, P. Samuel, "Commutative algebra", '''1''', Springer (1975) |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 12Fxx [MSN][ZBL]
Two subextensions $A$ and $B$ of an extension $\def\O{\Omega}\O$ of $k$ are called linearly disjoint if the
subalgebra generated by $A$ and $B$ in $\O$ is (isomorphic to) the
tensor product $A\otimes B$ over $k$ (cf.
Extension of a field). Let $A$ and $B$ be
arbitrary subrings of an extension $\O$ of $k$, containing $k$, and let
$C$ be the subring of $\O$ generated by $A$ and $B$. There is always a
ring homomorphism $\phi:A\otimes B \to C$ that associates with an element $x\otimes y\in A\otimes B$, $x\in A$, $y\in B$,
the product $xy$ in $C$. The algebras $A$ and $B$ are said to be
linearly disjoint over $k$ if $\phi$ is an isomorphism of $A\otimes B$ onto
$C$. In this case, $A\cap B = k$. For $A$ and $B$ to be linearly disjoint over
$k$ it is sufficient that there is a basis of $B$ over $k$ that is
independent over $A$. If $A$ is a finite extension of $k$, then the
degree of the extension $[B(A):B]$ does not exceed the degree of extension
$A:k$ and equality holds if and only if $A/k$ and $B/k$ are linearly
disjoint.
References
[Bo] |
N. Bourbaki, "Algebra", Elements of mathematics, 1, Springer (1988) pp. Chapts. 4–7 (Translated from French)
|
[ZaSa] |
O. Zariski, P. Samuel, "Commutative algebra", 1, Springer (1975)
|