Namespaces
Variants
Actions

Difference between revisions of "User:Rafael.greenblatt/sandbox/Pfaffian"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Created page with "''of a skew-symmetric matrix $X$'' The polynomial $\text{Pf } X$ in the entries of $X$ whose square is $\text{det } X$. More precisely, if $X = \|x_{ij}\|$ is a skew-symmet...")
 
Line 1: Line 1:
 
''of a skew-symmetric matrix $X$''
 
''of a skew-symmetric matrix $X$''
  
The polynomial  $\text{Pf } X$ in the entries of $X$ whose square is $\text{det } X$.  More precisely, if $X = \|x_{ij}\|$ is a skew-symmetric matrix (i.e.  $x_{ij}=-x_{ji}$, $x_{ii}=0$; such a matrix is sometimes also called an  alternating matrix) of order $2n$ over a commutative-associative ring  $A$ with a unit, then <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250010.png" /> is the element of <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250011.png" /> given by the  formula
+
The polynomial  $\text{Pf } X$ in the entries of $X$ whose square is $\text{det } X$.  More precisely, if $X = \|x_{ij}\|$ is a skew-symmetric matrix (i.e.  $x_{ij}=-x_{ji}$, $x_{ii}=0$; such a matrix is sometimes also called an  alternating matrix) of order $2n$ over a commutative-associative ring  $A$ with a unit, then $\text{Pf } X$ is the element of $A$ given by the  formula
  
<table class="eq" style="width:100%;">  <tr><td valign="top"  style="width:94%;text-align:center;"><img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250012.png"  /></td> </tr></table>
+
$$
 +
\text{Pf } X = \sum_s \varepsilon(s)x_{i_1j_1}\ldotsx_{i_nj_n},
 +
$$
  
 
where the  summation is over all possible partitions <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250013.png" /> of the  set <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250014.png" /> into  non-intersecting pairs <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250015.png" />, where one may  suppose that <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250016.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250017.png" />, and where  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250018.png" /> is the sign of  the permutation
 
where the  summation is over all possible partitions <img align="absmiddle"  border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250013.png" /> of the  set <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250014.png" /> into  non-intersecting pairs <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250015.png" />, where one may  suppose that <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250016.png" />, <img  align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250017.png" />, and where  <img align="absmiddle" border="0"  src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072500/p07250018.png" /> is the sign of  the permutation

Revision as of 14:09, 25 January 2012

of a skew-symmetric matrix $X$

The polynomial $\text{Pf } X$ in the entries of $X$ whose square is $\text{det } X$. More precisely, if $X = \|x_{ij}\|$ is a skew-symmetric matrix (i.e. $x_{ij}=-x_{ji}$, $x_{ii}=0$; such a matrix is sometimes also called an alternating matrix) of order $2n$ over a commutative-associative ring $A$ with a unit, then $\text{Pf } X$ is the element of $A$ given by the formula

$$ \text{Pf } X = \sum_s \varepsilon(s)x_{i_1j_1}\ldotsx_{i_nj_n}, $$

where the summation is over all possible partitions of the set into non-intersecting pairs , where one may suppose that , , and where is the sign of the permutation

A Pfaffian has the following properties:

1) for any matrix of order ;

2) ;

3) if is a free -module with basis and if

then

References

[1] N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)
How to Cite This Entry:
Rafael.greenblatt/sandbox/Pfaffian. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rafael.greenblatt/sandbox/Pfaffian&oldid=20485