Namespaces
Variants
Actions

Difference between revisions of "Standard Borel space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(refs)
(ref)
Line 14: Line 14:
 
* $(X,\A)$ is isomorphic to some Borel subset of some separable complete metric space with the Borel σ-algebra.
 
* $(X,\A)$ is isomorphic to some Borel subset of some separable complete metric space with the Borel σ-algebra.
  
Finite and countable standard Borel spaces are trivial: all subsets are measurable. Two such spaces are isomorphic if and only if they have the same cardinality, which is trivial. But the following result is surprising and highly nontrivial.
+
Finite and countable standard Borel spaces are trivial: all subsets are measurable. Two such spaces are isomorphic if and only if they have the same cardinality, which is trivial. But the following result ("the isomorphism theorem", see [1, Sect. 15.B]) is surprising and highly nontrivial.
  
 
'''Theorem 1.''' All uncountable standard Borel spaces are mutually isomorphic.
 
'''Theorem 1.''' All uncountable standard Borel spaces are mutually isomorphic.

Revision as of 19:07, 30 December 2011

Also: standard measurable space

2020 Mathematics Subject Classification: Primary: 28A05 Secondary: 03E1554H05 [MSN][ZBL]

$ \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb C} \newcommand{\Om}{\Omega} \newcommand{\A}{\mathcal A} \newcommand{\B}{\mathcal B} \newcommand{\P}{\mathbf P} $ A Borel space $(X,\A)$ is called standard if it satisfies the following equivalent conditions:

  • $(X,\A)$ is isomorphic to some compact metric space with the Borel σ-algebra;
  • $(X,\A)$ is isomorphic to some separable complete metric space with the Borel σ-algebra;
  • $(X,\A)$ is isomorphic to some Borel subset of some separable complete metric space with the Borel σ-algebra.

Finite and countable standard Borel spaces are trivial: all subsets are measurable. Two such spaces are isomorphic if and only if they have the same cardinality, which is trivial. But the following result ("the isomorphism theorem", see [1, Sect. 15.B]) is surprising and highly nontrivial.

Theorem 1. All uncountable standard Borel spaces are mutually isomorphic.

That is, up to isomorphism we have "the" uncountable standard Borel space. Its "incarnations" include $\R^n$ (for every $n\ge1$), separable Hilbert spaces, the Cantor set, the set of all irrational numbers etc. (these are separable complete metric spaces or Borel sets in such spaces), endowed with their Borel σ-algebras. That is instructive: topological notions such as dimension, connectedness, compactness etc. do not apply to Borel spaces.

Here is another important fact (see [3, Th. 3.2] or [1, Sect. 15.A]) in two equivalent forms.

Theorem 2a. If a bijective map between standard Borel spaces is measurable then the inverse map is also measurable.

Theorem 2b. If σ-algebras $\A$, $\B$ on $X$ are such that $\A\subset\B$ and $(X,\A)$, $(X,\B)$ are standard then $\A=\B$.

Example. The real line with the Lebesgue σ-algebra is not standard (by Theorem 2b).

References

[1] Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995) | MR1321597 | Zbl 0819.04002
[2] Richard M. Dudley, "Real analysis and probability", Wadsworth&Brooks/Cole (1989) | MR0982264 | Zbl 0686.60001
[3]George W. Mackey, "Borel structure in groups and their duals", Trans. Amer. Math. Soc. 85 (1957), 134–165 | MR0089999 | Zbl 0082.11201
How to Cite This Entry:
Standard Borel space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Standard_Borel_space&oldid=19994